96 research outputs found

    Effects of grapefruit, grapefruit juice and water preloads on energy balance, weight loss, body composition, and cardiometabolic risk in free-living obese adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing dietary energy density has proven to be an effective strategy to reduce energy intakes and promote weight control. This effect appears most robust when a low energy dense preload is consumed before meals. Yet, much discussion continues regarding the optimal form of a preload. The purpose of the present study was to compare effects of a solid (grapefruit), liquid (grapefruit juice) and water preload consumed prior to breakfast, lunch and dinner in the context of caloric restriction.</p> <p>Methods</p> <p>Eighty-five obese adults (BMI 30-39.9) were randomly assigned to (127 g) grapefruit (GF), grapefruit juice (GFJ) or water preload for 12 weeks after completing a 2-week caloric restriction phase. Preloads were matched for weight, calories, water content, and energy density. Weekly measures included blood pressure, weight, anthropometry and 24-hour dietary intakes. Resting energy expenditure, body composition, physical performance and cardiometabolic risk biomarkers were assessed.</p> <p>Results</p> <p>The total amount (grams) of food consumed did not change over time. Yet, after preloads were combined with caloric restriction, average dietary energy density and total energy intakes decreased by 20-29% from baseline values. Subjects experienced 7.1% weight loss overall, with significant decreases in percentage body, trunk, android and gynoid fat, as well as waist circumferences (-4.5 cm). However, differences were not statistically significant among groups. Nevertheless, the amount and direction of change in serum HDL-cholesterol levels in GF (+6.2%) and GFJ (+8.2%) preload groups was significantly greater than water preload group (-3.7%).</p> <p>Conclusions</p> <p>These data indicate that incorporating consumption of a low energy dense dietary preload in a caloric restricted diet is a highly effective weight loss strategy. But, the form of the preload did not have differential effects on energy balance, weight loss or body composition. It is notable that subjects in GF and GFJ preload groups experienced significantly greater benefits in lipid profiles.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00581074">NCT00581074</a></p

    Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    Get PDF
    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits

    Tissue-Specific Function of Period3 in Circadian Rhythmicity

    Get PDF
    The mammalian circadian system is composed of multiple central and peripheral clocks that are temporally coordinated to synchronize physiology and behavior with environmental cycles. Mammals have three homologs of the circadian Period gene (Per1, 2, 3). While numerous studies have demonstrated that Per1 and Per2 are necessary for molecular timekeeping and light responsiveness in the master circadian clock in the suprachiasmatic nuclei (SCN), the function of Per3 has been elusive. In the current study, we investigated the role of Per3 in circadian timekeeping in central and peripheral oscillators by analyzing PER2::LUCIFERASE expression in tissues explanted from C57BL/6J wild-type and Per3−/− mice. We observed shortening of the periods in some tissues from Per3−/− mice compared to wild-types. Importantly, the periods were not altered in other tissues, including the SCN, in Per3−/− mice. We also found that Per3-dependent shortening of endogenous periods resulted in advanced phases of those tissues, demonstrating that the in vitro phenotype is also present in vivo. Our data demonstrate that Per3 is important for endogenous timekeeping in specific tissues and those tissue-specific changes in endogenous periods result in internal misalignment of circadian clocks in Per3−/− mice. Taken together, our studies demonstrate that Per3 is a key player in the mammalian circadian system

    Topographical expression of class IA and class II phosphoinositide 3-kinase enzymes in normal human tissues is consistent with a role in differentiation

    Get PDF
    BACKGROUND: Growth factor, cytokine and chemokine-induced activation of PI3K enzymes constitutes the start of a complex signalling cascade, which ultimately mediates cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. The PI3K enzyme family is divided into 3 classes; class I (subdivided into IA and IB), class II (PI3K-C2α, PI3K-C2β and PI3K-C2γ) and class III PI3K. Expression of these enzymes in human tissue has not been clearly defined. METHODS: In this study, we analysed the immunohistochemical topographical expression profile of class IA (anti-p85 adaptor) and class II PI3K (PI3K-C2α and PI3K-C2β) enzymes in 104 formalin-fixed, paraffin embedded normal adult human (age 33–71 years, median 44 years) tissue specimens including those from the gastrointestinal, genitourinary, hepatobiliary, endocrine, integument and lymphoid systems. Antibody specificity was verified by Western blotting of cell lysates and peptide blocking studies. Immunohistochemistry intensity was scored from undetectable to strong. RESULTS: PI3K enzymes were expressed in selected cell populations of epithelial or mesenchymal origin. Columnar epithelium and transitional epithelia were reactive but mucous secreting and stratified squamous epithelia were not. Mesenchymal elements (smooth muscle and endothelial cells) and glomerular epithelium were only expressed PI3K-C2α while ganglion cells expressed p85 and PI3K-C2β. All three enzymes were detected in macrophages, which served as an internal positive control. None of the three PI3K isozymes was detected in the stem cell/progenitor compartments or in B lymphocyte aggregates. CONCLUSIONS: Taken together, these data suggest that PI3K enzyme distribution is not ubiquitous but expressed selectively in fully differentiated, non-proliferating cells. Identification of the normal in vivo expression pattern of class IA and class II PI3K paves the way for further analyses which will clarify the role played by these enzymes in inflammatory, neoplastic and other human disease conditions

    Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia

    No full text
    Objective: Food intake is highly regulated by central homeostatic and hedonic mechanisms in response to peripheral and environmental cues. Neutral energy balance stems from proper integration of homeostatic signals with those “sensing” the rewarding properties of food. Impairments in brain insulin signaling causes dysregulation of feeding behaviors and, as a consequence, hyperphagia. Here, we sought to determine how the mammalian target of rapamycin complex 2 (mTORC2), a complex involved in insulin signaling, influences high fat feeding. Methods: Rictor is a subunit of mTORC2, and its genetic deletion impairs mTORC2 activity. We used Cre-LoxP technology to delete Rictorin tyrosine hydroxylase (TH) expressing neurons (TH Rictor KO). We assessed food intake, body weight, body composition and DA dependent behaviors. Results: TH Rictor KO mice display a high-fat diet specific hyperphagia, yet, when on low-fat diet, their food intake is indistinguishable from controls. Consistently, TH Rictor KO become obese only while consuming high-fat diet. This is paralleled by reduced brain DA content, and disruption of DA dependent behaviors including increased novelty-induced hyperactivity and exaggerated response to the psycho stimulant amphetamine (AMPH). Conclusions: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors

    Imbalance in resting state functional connectivity is associated with eating behaviors and adiposity in children

    Get PDF
    Background and Hypothesis: Over the past 30 years, childhood obesity in the US has nearly doubled, while obesity has tripled among adolescents. Non-homeostatic eating, influenced by impulsivity and inhibition, may undermine successful long-term weight loss. We hypothesized that unhealthy eating habits and adiposity among children are associated with functional connectivity between brain regions associated with impulsivity, response inhibition, and reward. Methods: We analyzed resting state functional magnetic resonance images from 38 children, ages 8–13. Using seed-based resting state functional connectivity, we quantified connectivity between brain regions associated with response inhibition (inferior parietal lobe [IPL]), impulsivity (frontal pole), and reward (nucleus accumbens [NAc]). We assessed the relationship of resting state functional connectivity with adiposity, quantified by BMI z-score, and eating behaviors, as measured by the Child Eating Behaviour Questionnaire (CEBQ). We computed an imbalance measure—the difference between [frontal pole:NAC] and [ipl:nac] functional connectivity—and investigated the relationship of this imbalance with eating behaviors and adiposity. Results: As functional connectivity imbalance is increasingly biased toward impulsivity, adiposity increases. Similarly, as impulsivity-biased imbalance increases, food approach behaviors increase and food avoidance behaviors decrease. Increased adiposity is associated with increased food approach behaviors and decreased food avoidance behaviors. Conclusions: In the absence of any explicit eating-related stimuli, the developing brain is primed toward food approach and away from food avoidance behavior with increasing adiposity. Imbalance in resting state functional connectivity that is associated with non-homeostatic eating develops during childhood, as early as 8–13 years of age. Our results indicate the importance of identifying children at risk for obesity for earlier intervention. In addition to changing eating habits and physical activity, strategies that normalize neural functional connectivity imbalance are needed to maintain healthy weight. Mindfulness may be one such approach as it is associated with increased response inhibition and decreased impulsivity

    Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s)

    No full text
    Daily rhythmic processes are coordinated by circadian clocks, which are present in numerous central and peripheral tissues. In mammals, two circadian clocks, the food-entrainable oscillator (FEO) and methamphetamine-sensitive circadian oscillator (MASCO), are "black box" mysteries because their anatomical loci are unknown and their outputs are not expressed under normal physiological conditions. In the current study, the investigation of the timekeeping mechanisms of the FEO and MASCO in mice with disruption of all three paralogs of the canonical clock gene, Period, revealed unique and convergent findings. We found that both the MASCO and FEO in Per1(-/-)/Per2(-/-)/Per3(-/-) mice are circadian oscillators with unusually short (similar to 21 h) periods. These data demonstrate that the canonical Period genes are involved in period determination in the FEO and MASCO, and computational modeling supports the hypothesis that the FEO and MASCO use the same timekeeping mechanism or are the same circadian oscillator. Finally, these studies identify Per1(-/-)/Per2(-/-)/Per3(-/-) mice as a unique tool critical to the search for the elusive anatomical location(s) of the FEO and MASCO.National Science FoundationNational Science Foundation [IOS-1146908]National Mouse Metabolic Phenotyping Centers MICROMouse ProgramNational Mouse Metabolic Phenotyping Centers MICROMouse Program [U24DK076169]Tennessee Valley Healthcare SystemTennessee Valley Healthcare SystemNational Institutes of Health [DK085712]National Institutes of HealthDiabetes Research and Training CenterDiabetes Research and Training Center [DK20593

    Disruption of Daily Rhythms by High-Fat Diet Is Reversible

    Get PDF
    <div><p>In mammals a network of circadian clocks coordinates behavior and physiology with 24-h environmental cycles. Consumption of high-fat diet disrupts this temporal coordination by advancing the phase of the liver molecular clock and altering daily rhythms of eating behavior and locomotor activity. In this study we sought to determine whether these effects of high-fat diet on circadian rhythms were reversible. We chronically fed mice high-fat diet and then returned them to low-fat chow diet. We found that the phase of the liver PERIOD2::LUCIFERASE rhythm was advanced (by 4h) and the daily rhythms of eating behavior and locomotor activity were altered for the duration of chronic high-fat diet feeding. Upon diet reversal, the eating behavior rhythm was rapidly reversed (within 2 days) and the phase of the liver clock was restored by 7 days of diet reversal. In contrast, the daily pattern of locomotor activity was not restored even after 2 weeks of diet reversal. Thus, while the circadian system is sensitive to changes in the macronutrient composition of food, the eating behavior rhythm and liver circadian clock are specifically tuned to respond to changes in diet.</p></div
    corecore