108 research outputs found

    Competition in Social Networks: Emergence of a Scale-free Leadership Structure and Collective Efficiency

    Full text link
    Using the minority game as a model for competition dynamics, we investigate the effects of inter-agent communications on the global evolution of the dynamics of a society characterized by competition for limited resources. The agents communicate across a social network with small-world character that forms the static substrate of a second network, the influence network, which is dynamically coupled to the evolution of the game. The influence network is a directed network, defined by the inter-agent communication links on the substrate along which communicated information is acted upon. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a robust leadership structure that is scale-free. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.Comment: 4 pages, 2 postscript figures include

    Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks

    Full text link
    Canalization of genetic regulatory networks has been argued to be favored by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k-dimensional Ising hypercube to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalized functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.

    Using Real Options Analysis for Evaluating Uncertain Investments in Information Technology: Insights from the ICIS 2001 Debate

    Get PDF
    Business and information systems (IS) executives continue to grapple with issues of risk and uncertainty in evaluating investments in information technology (IT). Despite the use of net present value (NPV) and other investment appraisal techniques, executives are often forced to rely on instinct when finalizing IT investment decisions. Recognizing the shortcomings of NPV, real options analysis has been suggested as an alternative approach, one that considers the risks associated with an investment while recognizing the ability of corporations to defer an investment until a later period or to make a partial investment instead. Responding to a growing interest in real options analysis among the IS community, a debate involving four prominent researchers was convened at the 2001 International Conference on Information Systems (ICIS). In addition to offering a tutorial overview of real options, the goal of the debate was to assess the state of research in this area and to identify avenues for future research. This paper describes the outcomes of the debate, culminating in a series of research questions and topics that set the stage for future research in IT and real options analysis. A transcript of the debate and an overview of real options analysis are included as appendices

    Identification of Novel Fibrosis Modifiers by In Vivo siRNA Silencing.

    Get PDF
    Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo

    Neither a novel tau proteinopathy nor an expansion of a phenotype: Reappraising clinicopathology-based nosology

    Get PDF
    The gold standard for classification of neurodegenerative diseases is postmortem histopathol-ogy; however, the diagnostic odyssey of this case challenges such a clinicopathologic model. We evaluated a 60-year-old woman with a 7-year history of a progressive dystonia–ataxia syndrome with supranuclear gaze palsy, suspected to represent Niemann–Pick disease Type C. Postmortem evaluation unexpectedly demonstrated neurodegeneration with 4-repeat tau deposition in a distribution diagnostic of progressive supranuclear palsy (PSP). Whole-exome sequencing revealed a new het-erozygous variant in TGM6, associated with spinocerebellar ataxia type 35 (SCA35). This novel TGM6 variant reduced transglutaminase activity in vitro, suggesting it was pathogenic. This case could be interpreted as expanding: (1) the PSP phenotype to include a spinocerebellar variant; (2) SCA35 as a tau proteinopathy; or (3) TGM6 as a novel genetic variant underlying a SCA35 phenotype with PSP pathology. None of these interpretations seem adequate. We instead hypothesize that impairment in the crosslinking of tau by the TGM6-encoded transglutaminase enzyme may compromise tau functionally and structurally, leading to its aggregation in a pattern currently classified as PSP. The lessons from this case study encourage a reassessment of our clinicopathology-based nosology.Fil: Marsili, Luca. University of Cincinnati; Estados UnidosFil: Sharma, Jennifer. University of Cincinnati; Estados UnidosFil: Espay, Alberto J.. University of Cincinnati; Estados UnidosFil: Migazzi, Alice. Universita degli Studi di Trento; ItaliaFil: Abdelghany, Elhusseini. University of Cincinnati; Estados UnidosFil: Hill, Emily J.. University of Cincinnati; Estados UnidosFil: Duque, Kevin R.. University of Cincinnati; Estados UnidosFil: Hagen, Matthew C.. University of Cincinnati; Estados UnidosFil: Stephen, Christopher D.. Harvard Medical School; Estados UnidosFil: Kovacs, Gabor G.. University of Toronto; CanadáFil: Lang, Anthony E.. University of Toronto; CanadáFil: Hadjivassiliou, Marios. University Of Sheffield (university Of Sheffield);Fil: Basso, Manuela. Universita degli Studi di Trento; ItaliaFil: Kauffman, Marcelo Andres. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Sturchio, Andrea. University of Cincinnati; Estados Unido

    Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation

    Get PDF
    Neurons that produce gonadotropin-releasing hormone (GnRH) are the final common pathway by which the brain regulates reproduction. GnRH neurons are regulated by an afferent network of kisspeptin-producing neurons. Kisspeptin binds to its cognate receptor on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion—thus gating down-stream events supporting reproduction. We have developed kisspeptin antagonists to facilitate the direct determination of the role of kisspeptin neurons in the neuroendocrine regulation of reproduction. In vitro and in vivo studies of analogues of kisspeptin-10 with amino substitutions have identified several potent and specific antagonists. A selected antagonist was shown to inhibit the firing of GnRH neurons in the brain of the mouse and to reduce pulsatile GnRH secretion in female pubertal monkeys; the later supporting a key role of kisspeptin in puberty onset. This analogue also inhibited the kisspeptin-induced release of luteinizing hormone (LH) in rats and mice and blocked the post-castration rise in LH in sheep, rats and mice, suggesting that kisspeptin neurons mediate the negative feedback effect of sex steroids on gonadotropin secretion in mammals. The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles of kisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer

    Drivers of site fidelity in ungulates

    Get PDF
    1. While the tendency to return to previously visited locations—termed ‘site fidelity’—is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals’ recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. 2. We compared inter‐year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance‐based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. 3. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren‐ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a ‘win‐stay, lose‐switch’ strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. 4. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter‐annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species‐specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. 5. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore