3 research outputs found

    Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics

    No full text
    This study presents the synthesis of a novel asymmetric 1,3-di(alkoxy)imidazolium based room temperature ionic liquid, more precisely 1-butoxy-3-ethoxy-2-ethyl-imidazolium bis(trifluoromethane)sulfonimide, and its application as an extraction solvent in liquid-phase microextraction of cannabidiol from natural cosmetics. Quantification was implemented, using a high performance liquid chromatography system coupled to ultraviolet detection. Molecular structure elucidation was performed by nuclear magnetic resonance spectroscopy. The extraction procedure was optimized by means of two different design of experiments. Additionally, a full validation was executed. The established calibration model, ranging from 0.6 to 6.0 mg g−1, was linear with a coefficient of determination of 0.9993. Accuracy and precision were demonstrated on four consecutive days with a bias within −2.6 to 2.3% and a maximum relative standard deviation value of 2.5%. Recoveries, tested for low and high concentration within the calibration range, were 80%. Stability of extracted cannabidiol was proven for three days at room temperature and fourteen days at 4 °C and −20 °C. An autosampler stability for 24 h was validated. Liquid-phase microextraction of cannabidiol from different formulated cream based cosmetics was performed, including four ointments and four creams. The results show that a significantly higher selectivity could be achieved compared to a conventional extraction methods with methanol

    Mechanistic Insights into the Formation of 1-Alkylidene/Arylidene-1,2,4-triazolinium Salts: A Combined NMR/Density Functional Theory Approach

    No full text
    Funding Information: This work was supported by the Austrian Science Fund (FWF, projects P34370 to CK) and the Austrian Research Promotion Agency FFG (West Austrian BioNMR, 858017). Publisher Copyright: © 2022 The Authors. Published by American Chemical SocietyIn a recent report on the synthetic approach to the novel substance class of 1-alkylidene/arylidene-1,2,4-triazolinium salts, a reaction mechanism suggesting a regioselective outcome was proposed. This hypothesis was tested via a combined NMR and density functional theory (DFT) approach. To this end, three experiments with 13C-labeled carbonyl reactants were monitored in situ by solution-state NMR. In one experiment, an intermediate as described in the former mechanistic proposal was observed. However, incorporation of 13C isotope labels into multiple sites of the heterocycle could not be reconciled with the “regioselective mechanism”. It was found that an unproductive reaction pathway can lead to 13C scrambling, along with metathetical carbonyl exchange. According to DFT calculations, the concurring reaction pathways are connected via a thermodynamically controlled cyclic 1,3-oxazetidine intermediate. The obtained insights were applied in a synthetic study including aliphatic ketones and para-substituted benzaldehydes. The mechanistic peculiarities set the potential synthetic scope of the novel reaction type.Peer reviewe
    corecore