135 research outputs found

    Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators

    Full text link
    The loss in superconducting microwave resonators at low-photon number and low temperatures is not well understood but has implications for achievable coherence times in superconducting qubits. We have fabricated single-layer resonators with a high quality factor by patterning a superconducting aluminum film on a sapphire substrate. Four resonator geometries were studied with resonant frequencies ranging from 5 to 7 GHz: a quasi-lumped element resonator, a coplanar strip waveguide resonator, and two hybrid designs that contain both a coplanar strip and a quasi-lumped element. Transmitted power measurements were taken at 30 mK as a function of frequency and probe power. We find that the resonator loss, expressed as the inverse of the internal quality factor, decreases slowly over four decades of photon number in a manner not merely explained by loss from a conventional uniform spatial distribution of two-level systems in an oxide layer on the superconducting surfaces of the resonator.Comment: 4 pages, 5 figures, Submitted to ASC 2010 conference proceeding

    Universal dielectric loss in amorphous solids from simultaneous bias and microwave field

    Full text link
    We derive the ac dielectric loss in glasses due to resonant processes created by two-level systems and a swept electric field bias. It is shown that at sufficiently large ac fields and bias sweep rates the nonequilibrium loss tangent created by the two fields approaches a universal maximum determined by the bare linear dielectric permittivity. In addition this nonequilibrium loss tangent is derived for a range of bias sweep rates and ac amplitudes and show that the loss tangent creates a predicted loss function that can be understood in a Landau-Zener theory and which can be used to extract the TLS density, dipole moment, and relaxation rate.Comment: To appear in Physical Review Letters, 4 pages, 3 figure

    Vacuum-Gap Capacitors for Low-Loss Superconducting Resonant Circuits

    Full text link
    Low-loss microwave components are used in many superconducting resonant circuits from multiplexed readouts of low-temperature detector arrays to quantum bits. Two-level system defects in amorphous dielectric materials cause excess energy loss. In an effort to improve capacitor components, we have used optical lithography and micromachining techniques to develop superconducting parallel-plate capacitors in which lossy dielectrics are replaced by vacuum gaps. Resonance measurements at 50 mK on lumped LC circuits that incorporate these vacuum-gap capacitors (VGCs) reveal loss tangents at low powers as low as 4x10^{-5}, significantly lower than with capacitors using amorphous dielectrics. VGCs are structurally robust, small, and easily scaled to capacitance values above 100 pF.Comment: 5 pages, 6 figures, .docx forma
    • …
    corecore