71 research outputs found

    Identification of Novel Tumor Antigens With Patient-Derived Immune-Selected Antibodies

    Get PDF
    The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions

    Opportunities and challenges in the use of personal health data for health research

    Get PDF
    Objective: Understand barriers to the use of personal health data (PHD) in research from the perspective of three stakeholder groups: early adopter individuals who track data about their health, researchers who may use PHD as part of their research, and companies that market self-tracking devices, apps or services, and aggregate and manage the data that are generated. Materials and Methods: A targeted convenience sample of 465 individuals and 134 researchers completed an extensive online survey. Thirty-five hourlong semi-structured qualitative interviews were conducted with a subset of 11 individuals and 9 researchers, as well as 15 company/key informants. Results: Challenges to the use of PHD for research were identified in six areas: data ownership; data access for research; privacy; informed consent and ethics; research methods and data quality; and the unpredictable nature of the rapidly evolving ecosystem of devices, apps, and other services that leave ā€œdigital footprints.ā€ Individuals reported willingness to anonymously share PHD if it would be used to advance research for the good of the public. Researchers were enthusiastic about using PHD for research, but noted barriers related to intellectual property, licensing, and the need for legal agreements with companies. Companies were interested in research but stressed that their first priority was maintaining customer relationships. Conclusion: Although challenges exist in leveraging PHD for research, there are many opportunities for stakeholder engagement, and experimentation with these data is already taking place. These early examples foreshadow a much larger set of activities with the potential to positively transform how health research is conducted

    Null mutation for Macrophage Migration Inhibitory Factor (MIF) is associated with less aggressive bladder cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory cytokines may promote tumorigenesis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with regulatory properties over tumor suppressor proteins involved in bladder cancer. We studied the development of bladder cancer in wild type (WT) and MIF knockout (KO) mice given N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), a known carcinogen, to determine the role of MIF in bladder cancer initiation and progression.</p> <p>Methods</p> <p>5-month old male C57Bl/6 MIF WT and KO mice were treated with and without BBN. Animals were sacrificed at intervals up to 23 weeks of treatment. Bladder tumor stage and grade were evaluated by H&E. Immunohistochemical (IHC) analysis was performed for MIF and platelet/endothelial cell adhesion molecule 1 (PECAM-1), a measure of vascularization. MIF mRNA was analyzed by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>Poorly differentiated carcinoma developed in all BBN treated mice by week 20. MIF WT animals developed T2 disease, while KO animals developed only T1 disease. MIF IHC revealed predominantly urothelial cytoplasmic staining in the WT control animals and a shift toward nuclear staining in WT BBN treated animals. MIF mRNA levels were 3-fold higher in BBN treated animals relative to controls when invasive cancer was present. PECAM-1 staining revealed significantly more stromal vessels in the tumors in WT animals when compared to KOs.</p> <p>Conclusion</p> <p>Muscle invasive bladder cancer with increased stromal vascularity was associated with increased MIF mRNA levels and nuclear redistribution. Consistently lower stage tumors were seen in MIF KO compared to WT mice. These data suggest that MIF may play a role in the progression to invasive bladder cancer.</p

    Overcoming Breast Cancer Vascular Anergy and Immunotherapy Resistance

    No full text

    Expression of Phosphodiesterase 6 (PDE6) in Human Breast Cancer Cells

    Get PDF
    Considerable epidemiological evidence demonstrates a positive association between artificial light at night (LAN) levels and incidence rates of breast cancer, suggesting that exposure to LAN is a risk factor for breast cancer. There is a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN countries, and studies showing higher incidence of breast cancer among shift workers exposed to more LAN have led the International Agency for Research on Cancer to classify shift work as a probable human carcinogen. Nevertheless, the means by which light can affect breast cancer is still unknown. In this study we examined established human breast cancer cell lines and patientsā€™ primary breast cancer tissues for expression of genetic components of phosphodiesterase 6 (PDE6), a cGMP-specific PDE involved in transduction of the light signal, and previously thought to be selectively expressed in photoreceptors. By microarray analysis we find highly significant expression of mRNA for the PDE6B, PDE6C, and PDE6D genes in both the cell lines and patientsā€™ tissues, minimal expression of PDE6A and PDE6G and no expression of PDE6H. Using antibody specific for PDE6Ī², we find expression of PDE6B protein in a wide range of patientsā€™ tissues by immunohistochemistry, and in MCF-7 breast cancer cells by immunofluorescence and Western blot analysis. Considerable expression of key circadian genes, PERIOD 2, CLOCK, TIMELESS, CRYPTOCHROME 1, and CRYPTOCHROME 2 was also seen in all breast cancer cell lines and all patientsā€™ breast cancer tissues. These studies indicate that genes for PDE6 and control of circadian rhythm are expressed in human breast cancer cells and tissues and may play a role in transducing the effects of light on breast cancer

    AMPKĪ± Is Suppressed in Bladder Cancer through Macrophage-Mediated Mechanisms

    No full text
    Bladder cancer presents as either low- or high-grade disease, each with distinct mutational profiles; however, both display prominent mTORC1 activation. One major negative regulator of mTORC1 is AMPK, which is a critical metabolic regulator that suppresses cellular growth in response to metabolic stress by negatively regulating mTORC1. Alterations in the activation and protein levels of AMPK have been reported in breast, gastric, and hepatocellular carcinoma. To investigate whether AMPK suppression is responsible for mTOR activation in bladder cancer, the levels of AMPKĪ± were quantified in a cohort of primary human bladder cancers and adjacent nontumor tissues. The levels of p-AMPKĪ±, AMPKĪ±1, AMPKĪ±2, and total AMPKĪ± were significantly suppressed in both low- and high-grade disease when compared with nontumor tissue. To elucidate the AMPKĪ± suppression mechanism, we focused on inflammation, particularly tumor-infiltrating macrophages, due to their reported role in regulating AMPK expression. Treatment of HTB2 cancer cells with varying doses of differentiated U937 macrophage conditioned medium (CM) demonstrated a dose-dependent reduction of AMPKĪ± protein. Additionally, macrophage CM treatment of HTB2 and HT1376 bladder cells for various times also reduced AMPKĪ± protein but not mRNA levels. Direct TNFĪ± treatment also suppressed AMPKĪ± at the protein but not RNA level. Finally, staining of the human cohort for CD68, a macrophage marker, revealed that CD68+ cell counts correlated with reduced AMPKĪ± levels. In summary, these data demonstrate the potential role for inflammation and inflammatory cytokines in regulating the levels of AMPKĪ± and promoting mTORC1 activation in bladder cancer
    • ā€¦
    corecore