1,781 research outputs found

    High energy neutrinos from neutralino annihilations in the Sun

    Full text link
    Neutralino annihilations in the Sun to weak boson and top quark pairs lead to high-energy neutrinos that can be detected by the IceCube and KM3 experiments in the search for neutralino dark matter. We calculate the neutrino signals from real and virtual WW, ZZ, Zh, and ttˉt \bar t production and decays, accounting for the spin-dependences of the matrix elements, which can have important influences on the neutrino energy spectra. We take into account neutrino propagation including neutrino oscillations, matter-resonance, absorption, and nu_tau regeneration effects in the Sun and evaluate the neutrino flux at the Earth. We concentrate on the compelling Focus Point (FP) region of the supergravity model that reproduces the observed dark matter relic density. For the FP region, the lightest neutralino has a large bino-higgsino mixture that leads to a high neutrino flux and the spin-dependent neutralino capture rate in the Sun is enhanced by 10^3 over the spin-independent rate. For the standard estimate of neutralino captures, the muon signal rates in IceCube are identifiable over the atmospheric neutrino background for neutralino masses above M_Z up to 400 GeV.Comment: 45 pages, 18 figures and 5 tables, PRD versio

    Relativistic and Binding Energy Corrections to Direct Photon Production In Upsilon Decay

    Get PDF
    A systematic gauge-invariant method is used to calculate the rate for an upsilon meson to decay inclusively into a prompt photon. An expansion is made in the quark relative velocity v, which is a small natural parameter for heavy quark systems. Inclusion of these O(v^2) corrections tends to increase the photon rate in the middle z range and to lower it for larger z, a feature supported by the data.Comment: 13 pages, LateX, One figure (to be published in Phys. Rev. D, Sept. 1, 1996

    Colour-Octet Effects in Radiative Υ\Upsilon Decays

    Full text link
    We investigate the effects of colour-octet contributions to the radiative Υ\Upsilon decay within the Bodwin, Braaten and Lepage NRQCD factorization framework. Photons coming both from the coupling to hard processes (`direct') and by collinear emission from light quarks (`fragmentation') are consistently included at next-to-leading order (NLO) in αs\alpha_s. An estimate for the non-perturbative matrix elements which enter in the final result is then obtained. By comparing the NRQCD prediction at NLO for total decay rates with the experimental data, it is found that the non-perturbative parameters must be smaller than expected from the na\"\i ve scaling rules of NRQCD. Nevertheless, colour-octet contributions to the shape of the photon spectrum turn out to be significant.Comment: 25 pages, Latex, 8 figure

    Photoproduction of h_c

    Get PDF
    Using the NRQCD factorization formalism, we calculate the total cross section for the photoproduction of h_c mesons. We include color-octet and color-singlet mechanisms as well as next-to-leading order perturbative QCD corrections. The theoretical prediction depends on two nonperturbative matrix elements that are not well determined from existing data on charmonium production. For reasonable values of these matrix elements, the cross section is large enough that the h_c may be observable at the E831 experiment and at the HERA experiments.Comment: Revtex file 8 pages, 1 figure. Macros needed: epsf,floats,rotate Minor typos changed, and reference added. Version to be published in Phys.Rev.

    Color-Octet Fraction in J/Psi Production and Absorption

    Full text link
    The cross section between a ccˉc \bar c pair and a nucleon is small and sensitive to the ccˉc - \bar c separation if the pair is in a color-singlet state, but very large and insensitive to the separation if it is in a color-octet state. We use this property in an absorption model involving both color components to deduce the color structure of ccˉc \bar c pairs produced in p(B)AψXp(B)A \to \psi X reactions. Our analysis shows that the NA3, NA38 and E772 data are not inconsistent with the theoretical picture that color-octet and color-singlet precursors are produced in roughly equal proportions if the produced color-singlet precursors are pointlike and transparent. However, if the color-singlet precursors are not transparent but have a cross section of a few mb, these data do show a definite preference for a larger fraction of color-singlet precursors. In either case, the color-octet fraction increases with xFx_F, approaching unity as xFx_F becomes large.Comment: 9 pages, updated to include new result

    Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers

    Full text link
    Some results on the ordered statistics of eigenvalues for one-dimensional random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric quantum mechanics with disorder, the existence of low energy delocalized states induces eigenvalue correlations and makes the ordered statistics problem nontrivial. The resulting distributions are used to analyze the problem of classical diffusion in a random force field (Sinai problem) in the presence of weakly concentrated absorbers. It is shown that the slowly decaying averaged return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}}, where gg is the strength of the random force field and ρ\rho the density of absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting "Fundations and Applications of non-equilibrium statistical mechanics", Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left adde

    Solutions to the R_b, R_c and alpha_s puzzles by Vector Fermions

    Full text link
    We propose two minimal extensions of Standard Model, both of which can easily accommodate the recent puzzling observations about the excess in RbR_b, the deficit in RcR_c and the discrepancy in the low energy and high energy determinations of αs\alpha_{s}. Each model requires three additional heavy vectorial fermions in order to resolve the puzzles. The current phenomenological constraints and the new potential phenomena are also discussed.Comment: 12 pages, in LaTeX, postscript file also appear http://www.uic.edu/~keung/pub/rbrc.p

    Spin Dependence of Dark Matter Scattering

    Full text link
    New experiments designed to discover a weakly interacting dark matter (DM) particle via spin dependent scattering can distinguish models of electroweak symmetry breaking. The plane of spin dependent versus spin independent DM scattering cross sections is a powerful model diagnostic. We detail representative predictions of mSUGRA, singlet extended SM and MSSM, a new Dirac neutrino, Littlest Higgs with T-parity (LHT) and Minimal Universal Extra Dimensions (mUED) models. Of these models, the nMSSM has the largest spin dependent (SD) cross section. It has a very light neutralino which would give lower energy nuclear recoils. The Focus Point region of mSUGRA, mUED and the right handed neutrino also predict a very large SD cross section and predict a large signal of high energy neutrinos in the IceCube experiment from annihilations of dark matter in the Sun. We also describe a model independent treatment of the scattering of DM particles of different intrinsic spins.Comment: 40 pages, 13 figures, 1 tabl

    The Soft Gluon Emission Process in the Color-Octet Model for Heavy Quarkonium Production

    Get PDF
    The Color-Octet Model has been used successfully to analyze many problems in heavy quarkonium production. We examine some of the conceptual and practical problems of the soft gluon emission process in the Color-Octet Model. We use a potential model to describe the initial and final states in the soft gluon emission process, as the emission occurs at a late stage after the production of the heavy quark pair. It is found in this model that the soft gluon M1 transition, 1S0(8)->3S1(1), dominates over the E1 transition, 3PJ(8)->3S1(1), for J/psi and psi' production. Such a dominance may help resolve the questions of isotropic polarization and color-octet matrix element universality in the Color-Octet Model.Comment: 26 pages, in LaTe
    corecore