1,953 research outputs found

    Clinical and Experimental Cell Therapy in Parkinsonā€™s Disease

    Get PDF
    Parkinsonā€™s disease (PD), a chronic neurodegenerative disorder, is characterized as a movement disorder with resting tremor, dyskinesia, gait disturbance, etc. The main pathology is based on the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. These motor symptoms can be treated by dopaminergic drugs, but over time, the drugā€™s effect has less efficacy, and side effects develop such as involuntary movements. As there is no gold standard long-term treatment for this condition, there is a strong need to develop new drugs and therapies. The clinical and experimental findings of successful intrastriatal transplantation of fetal mesencephalic dopaminergic neurons into the brains of patients with PD have been well established. The development of human stem cell technology including embryonic stem (ES) cells or induced pluripotent stem (iPS) cells opened a new field called clinical cell therapy, especially for PD. In this chapter, we cover the scientific progress of the clinical and experimental trials of cell therapy for patients with PD. It also contains the recent advances in the clinical application of stem cells including neural stem cells, mesencephalic stem cell, ESC, and iPS cells and unsolved problems in the clinical setting. The combination of gene therapy and gene-manipulated stem cell application in PD therapy will be the most discussed in this area

    Effects of a Dehydroevodiamine-Derivative on Synaptic Destabilization and Memory Impairment in the 5xFAD, Alzheimer's Disease Mouse Model

    Get PDF
    Carboxy-dehydroevodiamineĀ·HCl (cx-DHED) is a derivative of DHED, which improves memory impairment. Carboxyl modification increases solubility in water, indicating that its bioavailability is higher than that of DHED. Cx-DHED is expected to have better therapeutic effects on Alzheimer's disease (AD) than DHED. In this study, we investigated the therapeutic effects of cx-DHED and the underlying mechanism in 5xFAD mice, transgenic (Tg) mouse model of AD model mice. In several behavioral tests, such as Y-maze, passive avoidance, and Morris water maze test, memory deficits improved significantly in cx-DHED-treated transgenic (Tg) mice compared with vehicle-treated Tg mice. We also found that AD-related pathologies, including amyloid plaque deposition and tau phosphorylation, were reduced after the treatment of Tg mice with cx-DHED. We determined the levels of synaptic proteins, such as GluN1, GluN2A, GluN2B, PSD-95 and Rabphilin3A, and Rab3A in the brains of mice of each group and found that GluN2A and PSD-95 were significantly increased in the brains of cx-DHED-treated Tg mice when compared with the brains of Tg-vehicle mice. These results suggest that cx-DHED has therapeutic effects on 5xFAD, AD model mice through the improvement of synaptic stabilization

    Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer's Disease Progression

    Get PDF
    Total tau (tā€tau) and phosphorylated tau (pā€tau) protein elevations in cerebrospinal fluid (CFS) are wellā€established hallmarks of Alzheimerā€™s disease (AD), while the associations of serum tā€tau and pā€tau levels with AD have been inconsistent across studies. To identify more accessible nonā€invasive AD biomarkers, we measured serum tau proteins and associations with cognitive function in ageā€matched controls (AMC, n = 26), mild cognitive impairment group (MCI, n = 30), and mildā€AD group (n = 20) according to the Miniā€mental State Examination (MMSE), Clinical Dementia Rating (CDR), and Global Deterioration Scale (GDS) scores. Serum tā€tau, but not pā€tau, was significantly higher in the mildā€AD group than AMC subjects (p < 0.05), and there were significant correlations of serum tā€tau with MMSE and GDS scores. Receiver operating characteristic (ROC) analysis distinguished mildā€AD from AMC subjects with moderate sensitivity and specificity (AUC = 0.675). We speculated that tau proteins in neuronal cellā€derived exosomes (NEX) isolated from serum would be more strongly associated with brain tau levels and disease characteristics, as these exosomes can penetrate the bloodā€brain barrier. Indeed, ELISA and Western blotting indicated that both NEX tā€tau and pā€tau (S202) were significantly higher in the mildā€AD group compared to AMC (p < 0.05) and MCI groups (p < 0.01). In contrast, serum amyloid Ī² (AĪ²1ā€“42) was lower in the mildā€AD group compared to MCI groups (p < 0.001). During the 4ā€year followā€up, NEX tā€tau and pā€tau (S202) levels were correlated with the changes in GDS and MMSE scores. In JNPL3 transgenic (Tg) mice expressing a human tau mutation, tā€tau and pā€tau expression levels in NEX increased with neuropathological progression, and NEX tau was correlated with tau in brain tissue exosomes (tEX), suggesting that tau proteins reach the circulation via exosomes. Taken together, our data suggest that serum tau proteins, especially NEX tau proteins, are useful biomarkers for monitoring AD progression. Ā© 2020 by the authors. Licensee MDPI, Basel, Switzerland.1

    Amyloid Precursor Protein Binding Protein-1 Modulates Cell Cycle Progression in Fetal Neural Stem Cells

    Get PDF
    Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of the amyloid precursor protein (APP) and serves as the bipartite activation enzyme for the ubiquitin-like protein, NEDD8. In the present study, we explored the physiological role of APP-BP1 in the cell cycle progression of fetal neural stem cells. Our results show that cell cycle progression of the cells is arrested at the G1 phase by depletion of APP-BP1, which results in a marked decrease in the proliferation of the cells. This action of APP-BP1 is antagonistically regulated by the interaction with APP. Consistent with the evidence that APP-BP1 function is critical for cell cycle progression, the amount of APP-BP1 varies depending upon cell cycle phase, with culminating expression at S-phase. Furthermore, our FRET experiment revealed that phosphorylation of APP at threonine 668, known to occur during the G2/M phase, is required for the interaction between APP and APP-BP1. We also found a moderate ubiquitous level of APP-BP1 mRNA in developing embryonic and early postnatal brains; however, APP-BP1 expression is reduced by P12, and only low levels of APP-BP1 were found in the adult brain. In the cerebral cortex of E16 rats, substantial expression of both APP-BP1 and APP mRNAs was observed in the ventricular zone. Collectively, these results indicate that APP-BP1 plays an important role in the cell cycle progression of fetal neural stem cells, through the interaction with APP, which is fostered by phopshorylation of threonine 668

    Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells.</p> <p>Case presentation</p> <p>We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy.</p> <p>Conclusions</p> <p>This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.</p

    ULTRAFILTRATED FRACTION OF KOREAN RED GINSENG EXTRACT IMPROVES MEMORY IMPAIRMENT OF TG2576 MICE VIA INHIBITION OF SOLUBLE AƎā€™ PRODUCTION AND ACETYLCHOLINESTERASE ACTIVITY

    Get PDF
    Objective: The goal of this study was to research for an effective fraction on memory improvement of Korean red ginseng.Methods: In this study, 80 % ethanol red ginseng extract (RE) was divided into inner fluid (REUI) and outer fluid (REUO) by the ultrafiltration and then REUO was further separated into four fractions namely, REUO-00, REUO-30, REUO-50 and REUO-70, respectively, by Diaion HP-20 column chromatography.Results: REUO has protected more significantly the H2O2-induced SHSY-5Y cell death than REUI. Interestingly, the hydrophobic parts of the REUO (REUO-EtOHs) such as REUO-30,-50 and-70 decreased more significantly the H2O2-induced cell death than its hydrophilic part (REUO-00) in a dose-dependent manner. Then, we focused on the activity of a candidate for cholinergic functions, because memory deficits of neurodegenerative diseases are closely associated with cholinergic dysfunctions. The REUO-EtOHs (1.25 mg/ml) inhibited the activity of the acetylcholinesterase and its half maximal inhibitory concentration (IC50) was about 2.358 mg/ml. Additionally, we investigated whether the intake of the REUO (50 mg/kg/d) during 12 w could improve memory impairment of 12-month old Tg2576 mice and decrease total soluble amyloid-ƎĀ² (AƎĀ²) proteins in the mouse brain cortex. The REUO alleviated significantly the memory impairment and successfully reduced the levels of the soluble AƎĀ² proteins in the mouse cortex.Conclusion: We finally suggest that the REUO, including majorly its hydrophobic part that may be considered as more effective for memory improvement, will be highly considered as valuable candidate for the memory-enhancing ingredients against cholinergic dysfunctions and cognitive impairments of neurodegenerative diseases including Alzheimer's disease.Keywords: Ginseng, Alzheimer's disease, Acetylcholinesterase, Ultrafiltration, MemoryƂ

    A Pan-Dengue Virus Reverse Transcription-Insulated Isothermal PCR Assay Intended for Point-of-Need Diagnosis of Dengue Virus Infection by Use of the POCKIT Nucleic Acid Analyzer

    Get PDF
    Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3ā€² untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries

    Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea

    Get PDF
    Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (30 -N-P-M-F-G-L-50 ) with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews

    S100A9 Knockout Decreases the Memory Impairment and Neuropathology in Crossbreed Mice of Tg2576 and S100A9 Knockout Mice Model

    Get PDF
    Our previous study presented evidence that the inflammation-related S100A9 gene is significantly upregulated in the brains of Alzheimer&apos;s disease (AD) animal models and human AD patients. In addition, experiments have shown that knockdown of S100A9 expression improves cognition function in AD model mice (Tg2576), and these animals exhibit reduced amyloid plaque burden. In this study, we established a new transgenic animal model of AD by crossbreeding the Tg2576 mouse with the S100A9 knockout (KO) mouse. We observed that S100A9KO/Tg2576 (KO/Tg) mice displayed an increased spatial reference memory in the Morris water maze task and Y-maze task as well as decreased amyloid beta peptide (AĪ²) neuropathology because of reduced levels of AĪ², C-terminal fragments of amyloid precursor protein (APP-CT) and phosphorylated tau and increased expression of anti-inflammatory IL-10 and also decreased expression of inflammatory IL-6 and tumor neurosis factor (TNF)-Ī± when compared with age-matched S100A9WT/Tg2576 (WT/Tg) mice. Overall, these results suggest that S100A9 is responsible for the neurodegeneration and cognitive deficits in Tg2576 mice. The mechanism of S100A9 is able to coincide with the inflammatory process. These findings indicate that knockout of S100A9 is a potential target for the pharmacological therapy of AD. Ā© 2014 Kim et al.1
    • ā€¦
    corecore