22 research outputs found

    Modélisation des réseaux de microirrigation

    Get PDF
    La microirrigation est une technique dont l'uniformitĂ© de distribution d'eau par les goutteurs est trĂšs sensible aux faibles variations de pression. Pour maĂźtriser ces variations, avec davantage de prĂ©cision, le prĂ©sent travail est basĂ© sur une analyse hydraulique approfondie de l'Ă©coulement aboutissant Ă  des Ă©quations diffĂ©rentielles aux dĂ©rivĂ©es partielles dont la pression et la vitesse de l'eau sont des inconnues. Ces Ă©quations non linĂ©aires sont rĂ©solues en utilisant la mĂ©thode d'intĂ©gration Runge-Kutta d'ordre quatre. Les modĂšles dĂ©veloppĂ©s dans la prĂ©sente Ă©tude permettent de simuler la dynamique de l'eau dans la rampe et dans le rĂ©seau et sont utilisĂ©s pour dĂ©terminer le dimensionnement optimal du rĂ©seau. Les rĂ©sultats obtenus corroborent ceux publiĂ©s par d'autres auteurs ayant utilisĂ© la mĂ©thode des volumes de contrĂŽle ou la mĂ©thode des Ă©lĂ©ments finis.Micro-irrigation is recommended for use in arid and semi-arid countries such as Algeria. This method consists of accurately providing the right amount of water and mineral nutrients to the plant's root area. The goal is to provide water efficiently by applying it at the correct rate. However, irrigation efficiency is clearly a function of the uniformity of water application.Micro-irrigation is a technique in which a delicate instrument known as an emitter (a terminal element of the network) operating with low pressure is used. The emitter, designed and manufactured with high precision, is a system with hydraulic laws and norms considered as a black box model that discharges water at atmospheric pressure. The emitter is an element of a network that constitutes a unit called a system or physical model. Water and mineral elements are delivered to a localized place, to the level of each plant by the emitters whose discharge is a function of lateral pressure. The precision of the dosage of irrigation, which must exactly satisfy the requirement for cultivation, depends fundamentally on the design of the network. It takes into account the pressure variations, which are due not only to head loss in the lateral branches of the network but also to the land slope and to the characteristics of the emitters. Water and air temperature and the possible plugging of the emitter orifice also influence the discharge of an emitter.The network is designed to satisfy the water needs of all the plants. Uniformity of water distribution is a main criterion for network design. To understand the variations in water distribution with more precision, we based the present work on a hydraulic analysis focussed on the outflow. This approach yields differential equations in which the pressure and the velocity of water in the pipeline network are unknown; the uniformity of water distribution is largely dependent on these variables. The differential second-order equations obtained are non-linear and analytical resolution is impossible, due to the empirical relation of the discharge emitter and the energy loss relation. Thus, the solution is obtained by numerical methods using the Runge Kutta integration method. The conditions in the limit equation modelling the outflow in the lateral pipes are different from those for the submain pipe. For the lateral pipes, the velocity of water at the extremity of the downstream region is inevitably minimal, as the whole region of discharge in the last pipe section is delivered by the last emitter where the pressure is minimal (Hmin). The velocity and pressure are calculated step by step along the lateral pipe until the entrance of water into the network where the pressure is maximal (Hsmax). The algorithm developed to simulate the emitter discharge distribution from the lateral pipes is called the "RK" model, and when it includes the discharge in the submain pipe it is called the "RS" model. These two models are transcribed in Fortran language by a computer program that automates iterations and calculations. Twelve parameters are changed in turn, or per group according to the cases studied, and the choice of the optimal solution of the parameters includes: emitter coefficients (a, y and Cvf); length and diameter of lateral pipes; the submain and main network (Lr, Dr, Ls, Ds, Lp, Dp); the roughness of the pipes (C); the spacing between the emitters (Δxr); the spacing between the lateral pipes (Δxs); and the water temperature. From these data of discharge and available pressure to the level of the parcel, the model precisely describes the distribution of the pressure and the discharges to all network emitters. In this case, the total discharge and the total required pressure, the uniformity of pressure and discharges are determined for each pattern of design. The combination of structural, functional and environmental factors is applied to guarantee an optimal exploitation taking into account the limits imposed by the specific norms for the micro-irrigation and the technical limits of velocity and pressure tolerance.Parameters that influence variations in uniformity are numerous and variable, which is why it is not easy to integrate them into this phase of study. The proposed model has merit as it avoids the complex numerical method of finite elements, recommended by some researchers (BRALTS et al., 1993; KANG and NISHIYAMA, 1994). The finite element method based on matrix structuring requires an important volume of iterations and calculations that could constitute a major constraint in the case of a large network. The model of BRALTS et al. (1993) is of particular interest in this regard ; our results have been confronted with those obtained with their model. Thus, the models presented in this study permit the simulation of water dynamics in micro-irrigation networks and offer the opportunity to determine the optimal design for such networks. Optimization is based on the variation of twelve classical parameters plus the associated geometric structure of the network, which was shown to be a non-negligible parameter. Optimization would not only reduce irrigation water volumes, but also fertilizer use and pumping energy. The example illustrated in Table 4 shows that although the networks deliver the same total discharge and have some similar design characteristics, the consumption of pumping energy changes from one geometric structure to another. Once a network is installed, it is impossible to change its design, so it is important to assure precision of the design calculations.This work shows promise in the simulation of the optimal design of micro-irrigation networks and also constitutes an economic means of making decisions. Moreover, the modelling results can guide field experimentation to explore other methods. Micro-irrigation can potentially solve many water shortage problems, but it requires further research in the safe reuse of low quality water and wastewater, the development of long term sustainability and the minimization salt accumulation and drainage problems

    Simulation numérique de la sédimentation dans les retenues de barrages : cas de la retenue de Zardezas, Algérie

    Get PDF
    La construction d'un modĂšle numĂ©rique destinĂ© Ă  prĂ©dire la formation et l'Ă©volution de dĂ©pĂŽts de sĂ©diments Ă  l'amont d'un barrage est prĂ©sentĂ©e. A partir d'informations sur les apports en eau et en sĂ©diments en provenance du bassin versant consolidĂ©es par une analyse hydrologique en QdF, un modĂšle hydraulique bidimensionnel horizontal couplant Ă©quations de Saint Venant et une Ă©quation de convection-diffusion est mis en Ɠuvre. L'application de ce modĂšle sur la retenue de Zardezas de la rĂ©gion de Skikda (AlgĂ©rie) montre, Ă  la fois, les difficultĂ©s pratiques rencontrĂ©es dans la mise en Ɠuvre et l'apport possible d'une telle mĂ©thode pour la gestion des retenues algĂ©riennes.Sedimentation rates are often very high in Algeria, reaching about 1% of the reservoir volume per year in most cases. The management of existing reservoirs and the choice of location of new reservoirs may be improved by using a numerical model that simulates sediment deposition. The proposed method was developed on a selected case for which a convenient set of data had been gathered.Initially, the Zardezas reservoir had a capacity of 34 million m3, but presently, the capacity is only 17 million m3. Due to the levelling of two topographies in 1975 and 1986 and discharge data available from 1968 to 1993, the numerical model could be calibrated for the period 1975-1986.As the cross-distribution of sediments is thought to be a main factor for the reservoir deposition rate, a 2-D horizontal hydrodynamic model was selected. Sediments were modelled by a concentration that was calculated using an advection-diffusion equation. A source term determining the exchange rate between the flow and the bottom as proportional to an equilibrium concentration was used. Calculation of this source term followed a simplified version of the method developed by VAN RIJN (1984). The set of 4 equations ((8) + (9) + (10) + (11)) was solved by a second-order explicit finite volume scheme of the Godunov type, which allows the modelling of very unsteady flows (PAQUIER, 1998). The bottom elevation was modified at every time step by distributing the calculated deposits inside one cell among the neighbouring vertices.Globally, the proposed method should be carried out in two steps. The first step involved model calibration including a hydrological analysis in order to determine the inputs (water and sediments) during the calibration period and calculation of the features of the hydrological regime for the extrapolation periods. The second step involved use if the model to define management strategies. The hydrological scenarios are built from the hydrological regime and the 2-D model is used to calculate the sediment deposits for every scenario. This second step is not described in the present paper.The hydrological analysis involved building QdF (flood-duration-frequency) curves (JAVELLE et al., 2000) from the daily discharges and from the maximum discharges of the rarest floods. Some flood discharge hydrographs were considered and were used to determine the duration of typical floods. Results from this hydrological analysis are summarised by curves in V(d,T) (Table 2) (maximum mean stream flows during the duration d for a return period T) and Q(d,T) (Table 3) (maximum over-threshold during stream flows for T) which were built from the converging QdF model developed by JAVELLE et al. (1999). The main catchment parameters D (characteristic flood duration) and the instantaneous peak discharge over a return period of 10 years were respectively equal to 4 hours and 362 m3 /s. For the estimate of the curves over a return period of 10 years, the gradex of maximum 24 hour rainfalls (estimated to be 24.7 mm) was used. From Table 3 of Q(d,T), mono frequency synthetic discharge hydrographs (HSMF) can be built (e.g. Figure 4) using a rising time equal to D. These hydrographs can be used to define hydrological scenarios by fixing the successive return periods (of the HSMF).For the calibration period 1975 to 1986, the observed or reconstituted discharge hydrographs were used to be closer to real events (Table 4). Because concentrations were not registered precisely enough, simplified assumptions were used for the calibration period and should be kept for future scenarios (peak concentration was fixed to 100 kg/m3 and a linear relation between discharge and concentration was assumed during the flood (see Figure 5)). Only one class of sediment with a mean diameter of 0.1 mm was considered. The 2-D calculations were performed on a grid of 1005 cells (Figure 6) with a space step between 10 and 80 metres. Model calibration consisted of selecting a suitable coefficient a (in equation (12)), which is equivalent to the average distance required to reach the equilibrium concentration. For the period 1975-1986, the calculation provides 4 m thick deposits through the entire reservoir bottom (Figure 8). The discrepancies with measurements were mainly too few deposits near the dam and too much sediment accumulated on the banks of the reservoir (Figures 7 to 9). It can be concluded that the proposed method provides useful results although some improvements are required such as: sediment exchange relations between the flow and the bottom; refining the calculation grid and reducing the uncertainty about the inputs by accurately and regularly measuring both discharge and sediment concentrations. The method should be further validated on other existing reservoirs in the same hydroclimatic context

    Effet de la rugositĂ© du fond d’un rĂ©servoir rectangulaire Ă  faible profondeur sur le champ d’écoulement

    Get PDF
    La sĂ©dimentation de la charge en suspension dans les rĂ©servoirs est un phĂ©nomĂšne assez complexe Ă  gĂ©rer. Des solutions existent pour maitriser ou rĂ©duire l’alluvionnement mais elles ne sont gĂ©nĂ©ralement pas faciles Ă  expliquer, surtout dans les retenues traversĂ©es par l’écoulement. Dans ce contexte, une Ă©tude expĂ©rimentale a Ă©tĂ© rĂ©alisĂ©e dans le but d’examiner l’effet de la rugositĂ© du fond du rĂ©servoir peu profond sur le mode d’écoulement. Les essais ont Ă©tĂ© effectuĂ©s dans un bassin de largeur B = 4 m, de longueur L = 6 m et de profondeur h = 0.2 m. Les profils des vitesses longitudinales ont Ă©tĂ© mesurĂ©s par des capteurs UVP (Ultrasonic Velocimetry Profiler). Une mesure par Large Scale Particle Image Velocimetry LSPIV a Ă©tĂ© Ă©galement utilisĂ©e pour dĂ©finir les champs de vitesses en surface par interprĂ©tation d’images vidĂ©o zĂ©nithales. Sur fond lisse, les Ă©coulements dans le rĂ©servoir se dĂ©veloppent de maniĂšre asymĂ©trique en dĂ©pit des conditions gĂ©omĂ©triques initialement symĂ©triques. Avec l’ajout d’une rugositĂ© au fond du bassin, les conditions d’écoulement se stabilisent et prĂ©sentent un champ de vitesses symĂ©trique. Les rĂ©sultats obtenus ont montrĂ© que le rĂ©gime d’écoulement est trĂšs sensible aux conditions de bords qui influencent significativement le champ des vitesses de surface dans un rĂ©servoir peu profond. L’augmentation de la rugositĂ© du lit accroit le frottement et l’épaisseur de la couche limite, avec pour consĂ©quence de rĂ©tablir la symĂ©trie d’écoulement

    Kalman Filter and Box-Jenkins Techniques for Monthly and Annual Streamflows Prediction in Northern Algeria

    Get PDF
    The Second International Symposium on Flash Floods in Wadi Systems: 25-27 October 2016. Technische UniversitÀt Berlin, Campus El Gouna, Egypt

    Comment gérer la stratification thermique dans les réserves d'eau

    No full text
    La stratification thermique des lacs et rĂ©servoirs peut conduire Ă  une perte d'oxygĂšne dans l'hypolimnion, ce qui peut avoir des impacts nĂ©gatifs sur la faune aquatique et la qualitĂ© de l'eau Ă  l'aval des rĂ©servoirs alimentant des ouvrages hydroĂ©lectriques. La restauration par dĂ©stratification est adaptĂ©e pour des lacs ou rĂ©servoirs de faibles profondeurs ayant des exploitations destinĂ©es Ă  l'alimentation ou l'irrigation. L'aĂ©ration hypolimnĂ©tique peut ĂȘtre prĂ©fĂ©rĂ©e Ă  la dĂ©stratification car elle permet l'oxygĂ©nation des eaux en prĂ©servant la stratification thermique, favorable Ă  la faune et Ă  la qualitĂ© des eaux. Si la dĂ©stratification peut-ĂȘtre plus adaptĂ©e par temps froid et pour des lacs ou rĂ©servoirs de faibles profondeurs et pour des exploitations destinĂ©es exclusivement Ă  l'alimentation ou l'irrigation, l'aĂ©ration hypolimnĂ©tique, en maintenant la stratification thermique, permet de crĂ©er un climat convenable pour la faune aquatique, et assure une tempĂ©rature favorable pour la qualitĂ© de l'eau

    COUPS DE BELIER DANS UN RESEAU RAMIFIE ENTERRE EN REFOULEMENT

    Get PDF
    Un aperçu bibliographique montre que le coup de bĂ©lier engendrĂ© dans une conduite en charge a Ă©tĂ© toujours Ă©tudiĂ©, ensupposant que cette derniĂšre est libre (non enterrĂ©e). La pression externe exercĂ©e par le sol n’a pas Ă©tĂ© considĂ©rĂ©e, et parconsĂ©quent la conduite peut se dĂ©former librement dans le sens radial. Dans cette hypothĂšse, le calcul du coup de bĂ©lier nenous informe pas sur la valeur susceptible d’exister rĂ©ellement si les conduites sont soumises Ă  la charge externe (sol).Dans ce travail, la mĂ©thode des caractĂ©ristiques est appliquĂ©e Ă  un rĂ©seau simple ramifiĂ© de rang 2, divergent libre et enterrĂ©,en refoulement. Afin de montrer l’effet du sol sur le coup de bĂ©lier, le raisonnement s’est portĂ© sur le cas des conduites en acieret en PVC libres et enterrĂ©es dans un sol de caractĂ©ristiques connues. Une comparaison a Ă©tĂ© prĂ©sentĂ©e sous forme de courbesmontrant ainsi la variation dans le temps des charges nodale et celle Ă  la sortie de la pompe pour les deux types de matĂ©riau encas libre et enterrĂ©.Mots clĂ©s : rĂ©gime transitoire- cĂ©lĂ©ritĂ©- coup de bĂ©lier.- rĂ©seau ramifiĂ©

    Approche numérique du calcul du point d'inception dans les canaux en marches d'escaliers

    No full text
    Une modĂ©lisation numĂ©rique de l'Ă©coulement bidimensionnel Ă  couche limite dans les canaux Ă  forte pente en marches d'escalier, basĂ©e sur un schĂ©ma aux diffĂ©rences fines est prĂ©sentĂ©e. Le systĂšme d'Ă©quations non linĂ©aire rĂ©gissant l'Ă©coulement a Ă©tĂ© dĂ©veloppĂ© Ă  partir des Ă©quations de la conservation de la masse et de la quantitĂ© de mouvement, tenant compte des caractĂšres de la couche limite.L'effet de la macro ‑rugositĂ© introduit par la prĂ©sence de marches le long du canal sur les caractĂ©ristiques de l'Ă©coulement est pris en comptĂ© dans le modĂšle sous forme de condition aux limites.La discrĂ©tisation du systĂšme d'Ă©quations obtenu, par un schĂ©ma aux diffĂ©rences finies en trois points permet de calculer le profil des vitesses, l'Ă©paisseur de la couche limite et la position du point de commencement du phĂ©nomĂšne d'entraĂźnement d'air. Ce dernier est obtenu par l'intersection de la couche limite et la ligne d'eau. Les valeurs de la position du point d'inception proches de celles obtenues expĂ©rimentalement sur le modĂšle rĂ©duit de l’évacuateur de crue de M’Bali pour plusieurs dĂ©bits simulĂ©s, illustrent la performance du modĂšle numĂ©rique proposĂ©

    Evaluation de la consommation et des pertes d'eau potable en zones arides d'Algérie

    No full text
    National audienceInquiries made in Biskra's region, estimate at more than 50 % the rate of losses with regard to the produced volumes of water. Flights altogether of the system of distribution are estimated according to the relative importance of the night-debit with regard to the daily average debit. At the users equipped with domestics pumps and not endowed with meters, over consumption and wasting water can reach alarming thresholds.Les enquĂȘtes effectuĂ©es dans la rĂ©gion de Biskra, Ă©valuent Ă  plus de 50 % le taux de pertes par rapport aux volumes d'eau produits. Les fuites dans l'ensemble du systĂšme de distribution sont estimĂ©es selon l'importance relative du dĂ©bit nocturne par rapport au dĂ©bit moyen journalier. Chez les usagers Ă©quipĂ©s de pompes domestiques et non dotĂ©s de compteurs, la surconsommation et le gaspillage d'eau peuvent atteindre des seuils alarmants

    Evolution de l'envasement dans la partie centrale de la retenue d'un barrage

    No full text
    Les Ă©tudes effectuĂ©es sur l'Ă©volution de l'envasement dans une dizaine de retenues de barrages en AlgĂ©rie ont permis de montrer qu’une retenue peut ĂȘtre divisĂ©e en trois zones, et que la zone II, qui dĂ©signe la partie centrale du rĂ©servoir, est loin de toute perturbation liĂ©e aux manoeuvres des vannes et des variations du plan d'eau dues aux crues. En consĂ©quence, la sĂ©dimentation s'effectue de façon uniforme, avec un toit de la vase qui Ă©volue parallĂšlement au fond de la retenue.Remini Boualem, Avenard J. M., Kettab A. Evolution de l'envasement dans la partie centrale de la retenue d'un barrage. In: L'eau, l'homme et la nature. 24Ăšmes journĂ©es de l'hydraulique. CongrĂšs de la SociĂ©tĂ© Hydrotechnique de France. Paris, 18-19-20 septembre 1996. 1996
    corecore