24 research outputs found

    Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Get PDF
    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability

    Measurement of (n, α

    Full text link
    A novel spectrometer was developed and used to measure the cross section for the (n,α) reaction at IPPE. Direct measurements of the α-particles yield from solid isotopic pure targets of 50, 52 and 53 chromium, 54 and 57 iron, 60 nickel, and 64 zinc were carried out in the neutron energy range from 4.7 to 7.2 MeV. For some isotopes the (n,α) reaction cross-section for neutron energies less than 14 MeV were measured for the first time. The result of the comparison of new experimental data with the evaluated data from libraries ENDF/B VII, JENDL 4.0, JEFF 3.1, ROSFOND 2010 and BROND 3 and with the experimental data of other authors is presented

    Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    Get PDF

    Basic models and approximation for the engineering description of the kinetics of the oxide layer of steel in a flow of heavy liquid metal coolant under various oxygen conditions

    No full text
    The article presents the results of corrosion processes, kinetics and changes in the oxide layer modeling using MASKA-LM software complex. The complex is intended for a numerical simulation of three-dimensional non-stationary processes of mass transfer and interaction of impurity components in a heavy liquid metal coolant (HLMC: lead, lead-bismuth). The software complex is based on the numerical solution of coupled three-dimensional equations of hydrodynamics, heat transfer, formation and convective-diffusive transport of chemically interacting components of impurities. Examples of calculations of mass transfer processes and interaction of impurity components in HLMC, formation of protective oxide films on the surfaces of steels are given to justify the coolant technology

    Basic models and approximation for the engineering description of the kinetics of the oxide layer of steel in a flow of heavy liquid metal coolant under various oxygen conditions

    No full text
    The article presents the results of corrosion processes, kinetics and changes in the oxide layer modeling using MASKA-LM software complex. The complex is intended for a numerical simulation of three-dimensional non-stationary processes of mass transfer and interaction of impurity components in a heavy liquid metal coolant (HLMC: lead, lead-bismuth). The software complex is based on the numerical solution of coupled three-dimensional equations of hydrodynamics, heat transfer, formation and convective-diffusive transport of chemically interacting components of impurities. Examples of calculations of mass transfer processes and interaction of impurity components in HLMC, formation of protective oxide films on the surfaces of steels are given to justify the coolant technology

    Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    No full text
    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability

    Digital spectrometer for prompt fission neutron spectrum measurements

    No full text
    This paper presents a digital neutron spectrometer based on simultaneous digitizing of the signals from the fission chamber and a scintillation detector. The scintillation detector is based on stilbene crystal. The intrinsic detection efficiency of the used stilbene crystal and the energy dependence of the light output for the recoil protons were measured. It is shown, that the method allowed us to achieve time resolution of 1.5 ns and an good n/γ separation down to neutron energies of 400 keV

    Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    No full text
    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability

    Digital spectrometer for prompt fission neutron spectrum measurements

    No full text
    This paper presents a digital neutron spectrometer based on simultaneous digitizing of the signals from the fission chamber and a scintillation detector. The scintillation detector is based on stilbene crystal. The intrinsic detection efficiency of the used stilbene crystal and the energy dependence of the light output for the recoil protons were measured. It is shown, that the method allowed us to achieve time resolution of 1.5 ns and an good n/γ separation down to neutron energies of 400 keV

    Towards a uniform description of recombiners performance by a consistent CFD approach with the use of a detailed mechanism of hydrogen oxidation

    No full text
    For a consistent CFD substantiation of the recombiner performance, a detailed mechanism of hydrogen and oxygen recombination is used. The detailed mechanism of chemical kinetics (multi-step recombination reaction) makes it possible to claim universality, both in the numerical justification of the recombiner performance and in the justification of the flameless recombination threshold and makes it possible to justify the method for optimizing the recombiner to improve its characteristics. The models developed based on this approach were applied to both flat and cylindrical catalytic elements, which are used in FR and RVK recombiners, respectively. As part of the numerical studies, the detailed recombination mechanism was verified, namely the temperature distribution along the catalytic elements was compared and the performance of catalytic elements was compared as well. Good agreement was obtained between the calculated and experimental data. The approach considers not only the mechanism of surface recombination of hydrogen and oxygen on platinum, but also the mechanism of recombination in the gas phase. This makes it possible to calculate the onset of intense combustion outside the catalytic plates, which is a sign of volumetric ignition of the hydrogen-air environment. The concentrations at which such ignition is possible were obtained at different contents of water vapor in the medium. Thus, the proposed approach and the created models make it possible to fully describe the performance of recombiners of distinct designs without the use of additional experimental data, which is extremely necessary when justifying the hydrogen explosion safety of nuclear power plants
    corecore