1,131 research outputs found
Many-core applications to online track reconstruction in HEP experiments
Interest in parallel architectures applied to real time selections is growing
in High Energy Physics (HEP) experiments. In this paper we describe performance
measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core
architecture (MIC) when applied to a typical HEP online task: the selection of
events based on the trajectories of charged particles. We use as benchmark a
scaled-up version of the algorithm used at CDF experiment at Tevatron for
online track reconstruction - the SVT algorithm - as a realistic test-case for
low-latency trigger systems using new computing architectures for LHC
experiment. We examine the complexity/performance trade-off in porting existing
serial algorithms to many-core devices. Measurements of both data processing
and data transfer latency are shown, considering different I/O strategies
to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in
High Energy and Nuclear Physics (CHEP); missing acks adde
Orbital Instabilities in a Triaxial Cusp Potential
This paper constructs an analytic form for a triaxial potential that
describes the dynamics of a wide variety of astrophysical systems, including
the inner portions of dark matter halos, the central regions of galactic
bulges, and young embedded star clusters. Specifically, this potential results
from a density profile of the form , where the radial
coordinate is generalized to triaxial form so that . Using the resulting analytic form of the potential, and the
corresponding force laws, we construct orbit solutions and show that a robust
orbit instability exists in these systems. For orbits initially confined to any
of the three principal planes, the motion in the perpendicular direction can be
unstable. We discuss the range of parameter space for which these orbits are
unstable, find the growth rates and saturation levels of the instability, and
develop a set of analytic model equations that elucidate the essential physics
of the instability mechanism. This orbit instability has a large number of
astrophysical implications and applications, including understanding the
formation of dark matter halos, the structure of galactic bulges, the survival
of tidal streams, and the early evolution of embedded star clusters.Comment: 50 pages, accepted for publication in Ap
Direct Analysis of Spectra of the Unusual Type Ib Supernova 2005bf
Synthetic spectra generated with the parameterized supernova
synthetic-spectrum code SYNOW are compared to spectra of the unusual Type Ib
supernova 2005bf. We confirm the discovery by Folatelli et al. (2006) that very
early spectra (about 30 days before maximum light) contain both
photospheric-velocity (8000 km/s) features of He I, Ca II, and Fe II, and
detached high-velocity (14,000 km/s) features of H-alpha, Ca II, and Fe II. An
early spectrum of SN 2005bf is an almost perfect match to a near-maximum-light
spectrum of the Type Ib SN 1999ex. Although these two spectra were at very
different times with respect to maximum light (20 days before maximum for SN
2005bf and five days after for SN 1999ex), they were for similar times after
explosion - about 20 days for SN 2005bf and 24 days for SN 1999ex. The almost
perfect match clinches the previously suggested identification of H-alpha in SN
1999ex and supports the proposition that many if not all Type Ib supernovae
eject a small amount of hydrogen. The earliest available spectrum of SN 2005bf
resembles a near-maximum-light spectrum of the Type Ic SN 1994I. These two
spectra also were at different times with respect to maximum light (32 days
before maximum for SN 2005bf and four days before for SN 1994I) but at similar
times after explosion - about eight days for SN 2005bf and 10 days for SN
1994I. The resemblance motivates us to consider a reinterpretation of the
spectra of Type Ic supernovae, involving coexisting photospheric-velocity and
high-velocity features. The implications of our results for the geometry of the
SN 2005bf ejecta, which has been suggested to be grossly asymmetric, are
briefly discussed.Comment: Accepted by PAS
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Recommended from our members
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector.
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies
Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering
We discuss a technique for measuring a charged particle's momentum by means
of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time
projection chamber (LArTPC). This method does not require the full particle
ionization track to be contained inside of the detector volume as other track
momentum reconstruction methods do (range-based momentum reconstruction and
calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its
performance on fully contained beam-neutrino-induced muon tracks both in
simulation and in data, and quantify its performance on exiting muon tracks in
simulation. Using simulation, we have shown that the standard Highland formula
should be re-tuned specifically for scattering in liquid argon, which
significantly improves the bias and resolution of the momentum measurement.
With the tuned formula, we find agreement between data and simulation for
contained tracks, with a small bias in the momentum reconstruction and with
resolutions that vary as a function of track length, improving from about 10%
for the shortest (one meter long) tracks to 5% for longer (several meter)
tracks. For simulated exiting muons with at least one meter of track contained,
we find a similarly small bias, and a resolution which is less than 15% for
muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first
estimate of the MCS momentum measurement capabilities of MicroBooNE for high
momentum exiting tracks
Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber
We present several studies of convolutional neural networks applied to data
coming from the MicroBooNE detector, a liquid argon time projection chamber
(LArTPC). The algorithms studied include the classification of single particle
images, the localization of single particle and neutrino interactions in an
image, and the detection of a simulated neutrino event overlaid with cosmic ray
backgrounds taken from real detector data. These studies demonstrate the
potential of convolutional neural networks for particle identification or event
detection on simulated neutrino interactions. We also address technical issues
that arise when applying this technique to data from a large LArTPC at or near
ground level
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
The development and operation of Liquid-Argon Time-Projection Chambers for
neutrino physics has created a need for new approaches to pattern recognition
in order to fully exploit the imaging capabilities offered by this technology.
Whereas the human brain can excel at identifying features in the recorded
events, it is a significant challenge to develop an automated, algorithmic
solution. The Pandora Software Development Kit provides functionality to aid
the design and implementation of pattern-recognition algorithms. It promotes
the use of a multi-algorithm approach to pattern recognition, in which
individual algorithms each address a specific task in a particular topology.
Many tens of algorithms then carefully build up a picture of the event and,
together, provide a robust automated pattern-recognition solution. This paper
describes details of the chain of over one hundred Pandora algorithms and tools
used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE
detector. Metrics that assess the current pattern-recognition performance are
presented for simulated MicroBooNE events, using a selection of final-state
event topologies.Comment: Preprint to be submitted to The European Physical Journal
Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter
The MicroBooNE detector is a liquid argon time projection chamber at Fermilab
designed to study short-baseline neutrino oscillations and neutrino-argon
interaction cross-section. Due to its location near the surface, a good
understanding of cosmic muons as a source of backgrounds is of fundamental
importance for the experiment. We present a method of using an external 0.5 m
(L) x 0.5 m (W) muon counter stack, installed above the main detector, to
determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are
acquired with this external muon counter stack placed in three different
positions, corresponding to cosmic rays intersecting different parts of the
detector. The data reconstruction efficiency of tracks in the detector is found
to be , in good agreement with the Monte Carlo reconstruction
efficiency . This analysis represents
a small-scale demonstration of the method that can be used with future data
coming from a recently installed cosmic-ray tagger system, which will be able
to tag of the cosmic rays passing through the MicroBooNE
detector.Comment: 19 pages, 12 figure
- …