566 research outputs found

    Diffusive Boundary Layers in the Free-Surface Excitable Medium Spiral

    Full text link
    Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems. In the limit of a large separation in timescale between fast excitation and slow recovery, one can reduce the spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this work, we study the free surface problem in the limit of small diffusivity for the slow field variable. Specifically, we show that a previously found spiral solution in the diffusionless limit can be extended to finite diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers which cure all the undesirable singularities of the aforementioned solution. The implications of our results for the study of spiral stability are briefly discussed.Comment: 6 pages, submitted to PRE Rapid Com

    How input fluctuations reshape the dynamics of a biological switching system

    Get PDF
    An important task in quantitative biology is to understand the role of stochasticity in biochemical regulation. Here, as an extension of our recent work [Phys. Rev. Lett. 107, 148101 (2011)], we study how input fluctuations affect the stochastic dynamics of a simple biological switch. In our model, the on transition rate of the switch is directly regulated by a noisy input signal, which is described as a nonnegative mean-reverting diffusion process. This continuous process can be a good approximation of the discrete birth-death process and is much more analytically tractable. Within this new setup, we apply the Feynman-Kac theorem to investigate the statistical features of the output switching dynamics. Consistent with our previous findings, the input noise is found to effectively suppress the input-dependent transitions. We show analytically that this effect becomes significant when the input signal fluctuates greatly in amplitude and reverts slowly to its mean.Comment: 7 pages, 4 figures, submitted to Physical Review
    • …
    corecore