2 research outputs found

    Collective States in Molecular Monolayers on 2D Materials

    Full text link
    Collective excited states form in organic two-dimensional layers through the Coulomb coupling of the molecular transition dipole moments. They manifest as characteristic strong and narrow peaks in the excitation and emission spectra that are shifted to lower energies compared to the monomer transition. We study experimentally and theoretically how robust the collective states are against homogeneous and inhomogeneous broadening as well as spatial disorder that occur in real molecular monolayers. Using a microscopic model for a two-dimensional dipole lattice in real space we calculate the properties of collective states and their extinction spectra. We find that the collective states persist even for 1-10% random variation in the molecular position and in the transition frequency, with similar peak position and integrated intensity as for the perfectly ordered system. We measure the optical response of a monolayer of the perylene-derivative MePTCDI on two-dimensional materials. On the wide band-gap insulator hexagonal boron nitride it shows strong emission from the collective state with a line width that is dominated by the inhomogeneous broadening of the molecular state. When using the semimetal graphene as a substrate, however, the luminescence is completely quenched. By combining optical absorption, luminescence, and multi-wavelength Raman scattering we verify that the MePTCDI molecules form very similar collective monolayer states on hexagonal boron nitride and graphene substrates, but on graphene the line width is dominated by non-radiative excitation transfer from the molecules to the substrate. Our study highlights the transition from the localized molecular state of the monomer to a delocalized collective state in the two-dimensional molecular lattice that is entirely based on Coulomb coupling between optically active excitations of the electrons or molecular vibrations

    Plasmonic bimetallic two-dimensional supercrystals for H2 generation

    Get PDF
    Sunlight-driven H-2 generation is a central technology to tackle our impending carbon-based energy collapse. Colloidal photocatalysts consisting of plasmonic and catalytic nanoparticles are promising for H-2 production at solar irradiances, but their performance is hindered by absorption and multiscattering events. Here we present a two-dimensional bimetallic catalyst by incorporating platinum nanoparticles into a well-defined supercrystal of gold nanoparticles. The bimetallic supercrystal exhibited an H-2 generation rate of 139mmolg(cat)(-1)h(-1) via formic acid dehydrogenation under visible light illumination and solar irradiance. This configuration makes it possible to study the interaction between the two metallic materials and the influence of this in catalysis. We observe a correlation between the intensity of the electric field in the hotspots and the boosted catalytic activity of platinum nanoparticles, while identifying a minor role of heat and gold-to-platinum charge transfer in the enhancement. Our results demonstrate the benefits of two-dimensional configurations with optimized architecture for liquid-phase photocatalysis
    corecore