6 research outputs found

    Paleoclimatic and diagenetic history of the Late Quaternary sediments in a core from the Southeastern Arabian Sea: geochemical and magnetic signals

    Get PDF
    Geochemical and rock-magnetic investigations were carried out on a sediment core collected from the SE Arabian Sea at 1420 m depth in oxygenated waters below the present-day oxygen minimum zone. The top 250 cm of the core sediments represent the last 35 kaBP. The δ18O values of Globigerinoides ruber are heaviest during the Last Glacial Maximum (LGM) and appear unaffected by low-saline waters transported from the Bay of Bengal by the strong northeast monsoon and West Indian coastal current. The signatures of Bølling-Allerød and Younger Dryas events are distinct in the records of magnetic susceptibility, organic carbon (OC) and δ 18O. Glacial sediments show higher OC, CaCO3, Ba, Mo, U and Cd, while the early-to-late Holocene sediments show increasing concentrations of OC, CaCO3, Ba, Cu, Ni and Zn and decreasing concentrations of Mo, U and Cd. Productivity induced low-oxygenated bottom waters and reducing sedimentary conditions during glaciation, and productivity and oxygenated bottom waters in the Holocene are responsible for their variation. The core exhibits different stages of diagenesis at different sediment intervals. The occurrence of fine-grained, low-coercivity, ferrimagnetic mineral during glacial periods is indicative of its formation in organic-rich, anoxic sediments, which may be analogous to the diagenetic magnetic enhancement known in sapropels of the Mediterranean Sea and Japan Sea. The glacial sediments exhibiting reductive diagenesis with anoxic sedimentary environment in this core correspond to reductive diagenesis and intermittent bioturbation (oxygenation) reported in another core in the vicinity. This suggests that the poorly oxygenated bottom water conditions during glacial times should not be generalized, but are influenced locally by productivity, sedimentation rates and sediment reworking

    Rock magnetic and geochemical record in a sediment core from the Eastern Arabian Sea: diagenetic and environmental implications during the late Quaternary

    Get PDF
    Rock magnetic concentration, grain size and mineralogy parameters together with organic carbon, calcium carbonate, redox-sensitive elements, δ18O of Globigerinoides ruber and radiocarbon dating were carried out on a 445 cm long sediment core collected at 1380 m depth off Mangalore, southwestern margin of India. The top 290 cm sediments of the core correspond to the last 18 kaBP. The δ18O and magnetic records exhibit major events at ∼ 16 kaBP, 14.5 kaBP, 11.5 kaBP and 9.8/8.6 kaBP related to start and intensity of the summer monsoon and climate change, and are synchronous with that of the western Arabian Sea and North Atlantic. The sediments with high magnetic susceptibility correlate with high sedimentation rates. The sediments are dominated by fine-grained magnetite, but intervals of 1.2-3.8 kaBP and 10-13.5 kaBP were subjected to diagenetic changes, resulting in the dissolution of fine-grained magnetites and enrichment of redox-sensitive trace elements (Cu, Ni, Zn, V, Mo and U). The sediments between 290 cm and 445 cm correspond to 18-27 kaBP and are characterized by distinct decrease in magnetic concentration, grain size and mineralogy parameters, high organic carbon, low concentrations of redox-sensitive trace elements and abundant pyritized tubules. The reductive diagenetic conditions indicated by rock magnetic properties are in contrast with the weak sub-oxic conditions revealed by low concentrations of trace elements in the sediments. The seasonal organic matter flux produced during the winter monsoon and moderate sedimentation rates favoured reductive diagenesis in the sediments at and below the last glacial maximum (LGM). Intermittent bioturbation, however, allowed oxidants to penetrate into the sediments, remobilized redox-sensitive trace elements into the water column and modified the primary geochemical signal of the sedimentary environment

    The nature and distribution of particulate matter in the Mandovi estuary, Central West coast of India

    Get PDF
    Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June-September when river discharge is high and also in February-May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal

    Miocene phosphorites from the Murray Ridge, Northwestern Arabian Sea

    Get PDF
    Phosphorites from the Murray Ridge, NW Arabian Sea comprise nodules, bioclasts, and bone fragments. The nodules are made up of a homogeneous, light-colored phosphate nucleus consisting of Rivulariacean filamentous cyanobacteria and a thin dark-grey colored phosphate cortex showing abundant microbial filaments and microborings. The bioclasts comprise of ∼14-14.5 Ma old planktonic foraminifers, accepted as the time of deposition. Spherical to ovoid-shaped apatite microparticles resembling fossil bacteria are distinct components in the bioclasts. Bone fragments exhibit apatite fillings. The nodules and bone fragments consist entirely of carbonate fluorapatite (CFA) with low Al, K, and Th concentrations suggesting absence of continental detritus. Shale-normalized REE patterns of the samples support a seawater-derived composition. The highly uniform initial εNd values of -4.8 to -5.1 are interpreted as the seawater value at the onset of phosphatization ∼14 Ma ago. In contrast, 87Sr/86Sr ratios show a large range of 0.709055 to 0.709124 corresponding to unusually young stratigraphic ages of ∼1 to 3 Ma. The data are interpreted as evidence for post-depositional Sr exchange of the recrystallizing phosphorites with fluids isotopically not much different from modern seawater. It is concluded that the phosphorites formed under oxic, shallow-water conditions where microbial populations assimilated phosphorus primarily from seawater and mediated precipitation of CFA during early diagenesis at the sediment-water interface on different substrates

    Fluctuations in productivity and denitrification in the southeastern Arabian Sea during the late Quaternary

    Get PDF
    Sedimentological and stable isotopic characteristics of sediments have been studied in a core from the southeastern Arabian Sea containing records of the past 70 ka. Palaeoproductivity proxies such as organic carbon (Corg), total nitrogen (TN) and calcium carbonate (CaCO3) contents, show high values at the core top and during the Last Glacial Maximum (LGM) and marine isotope stage (MIS) 4, suggesting high productivity, whereas low Corg and CaCO3 contents are associated with the MIS 1/2 and mid-MIS 3, indicating reduced productivity. The δ18O values in planktonic foraminifera range between - 2.7‰ and - 0.1‰, with a large glacial-interglacial amplitude Δδ18O of ~ 2.6‰, suggesting changes related to monsoonal precipitation/runoff. The δ15N values fluctuate between 5.4‰ and 7.3‰, signifying variation in denitrification intensity. The δ15N indicates an overall increase in denitrification intensity during MIS 1 and MIS 3 and, reduced intensity during MIS 1/2, LGM and mid-MISHigher primary productivity and reduced denitrification intensity during LGM and MIS 4 might be due to convective winter mixing and more oxygenated subsurface waters. Reduced primary productivity during MIS 1/2 and mid-MIS 3 might be the effect of enhanced precipitation associated with the intensified southwest monsoon fortifying near-surface stratification
    corecore