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Abstract   

          Phosphorites from the Murray Ridge, NW Arabian Sea comprise nodules, bioclasts, and 

bone fragments. The nodules are made up of a homogeneous, light-colored phosphate nucleus 

consisting of Rivulariacean filamentous cyanobacteria and a thin dark-grey colored phosphate 

cortex showing abundant microbial filaments and microborings. The bioclasts comprise ~14 -

14.5 Ma old planktonic foraminifers, accepted as the time of deposition. Spherical to ovoid-

shaped apatite microparticles resembling fossil bacteria are distinct components in the bioclasts. 

Bone fragments exhibit apatite fillings. The nodules and bone fragments consist entirely of 

carbonate fluorapatite with low Al, K, and Th concentrations suggesting absence of continental 

detritus. Shale-normalized REE patterns of the samples support a seawater-derived composition. 

The highly uniform initial εNd values of -4.8 to -5.1 are interpreted as the seawater value at the 

onset of phosphatization ~14 Ma ago. In contrast, 87Sr/ 86Sr ratios show a large range of 

0.709055 to 0.709124 corresponding to unusually young stratigraphic ages of ~1 to 3 Ma. The 

data are interpreted as evidence for post-depositional Sr-exchange of the recrystallizing 

phosphorites with fluids isotopically not much different from modern seawater. It is concluded 

that the phosphorites formed under oxic, shallow-water conditions where microbial populations 

assimilated phosphorus primarily from seawater and mediated precipitation of CFA during early 

diagenesis at the sediment-water interface on different substrates.  
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1. Introduction 

           Open-ocean phosphorites occur on isolated seamounts, plateaus, ridges, and other 

elevated areas of the seafloor (Burnett et al., 1987). Not included in this category are those from 

continental shelves and slopes. Since the discovery of phosphatized limestones at mid-Pacific 

seamounts by Hamilton (1956), open-ocean phosphorites were reported from the Pacific, 

Altantic, and Indian Oceans (Baturin, 1982). The deposits mostly formed under oxidizing 

conditions, although some can be linked to the equatorial upwelling and mid-water oxygen-

minimum zone (Halbach and Manheim, 1984). Phosphatic argillites associated with volcanic 

material (Kharin, 1974); Guano-derived (Insular-type; Piper, 1986), and marine sedimentary 

phosphorites (Glenn et al., 1994) are further varieties. Due to the low organic carbon content in 

open-ocean phosphorites, the sources of phosphorus, e.g. the water column versus submarine 

volcanism, have been a topic of debate (Glenn et al., 1994). Despite the fact that phosphorite 

from mid-ocean ridges can account for up to ∼12% of the total annual phosphorus input  in the 

oceans (Feely et al., 1996), there are surprisingly few studies on their composition and origin. 

The purpose of this paper is to elucidate the genesis of phosphorite samples from the Murray 

Ridge (MR) located near the highly productive upwelling region of the Oman margin (den Dulk 

et al., 2000).  For this purpose we interpret petrological and mineralogical evidence in 

combination with geochemical- and Nd-Sr isotopic data.   

2. Geologic setting, age and description of phosphorite samples   

          The Murray Ridge (MR) is a ~420 km long and ~20 to 50 km wide NE- trending 

asymmetric submarine high in the NW Arabian Sea (Fig. 1). It is a shallow oceanic ridge with a 

water depth of ∼400 m at its NE termination (Minshull et al., 1992). It is a part of the Arabian-

Indian plate boundary undergoing uplift since the early Miocene (Clift et al., 2002). The ridge is 

transected by deep discontinuous troughs with a sediment fill of ~2 km. Due to the fact that the 

sediment layers on the flanks of the MR are of  uniform   thickness, it can be concluded that the 

troughs were formed during recent faulting (Uchipi et al., 2002). The summit of the ridge lies 

within the oxygen minimum zone (OMZ: 150 m - 1250 m; den Dulk et al., 2000) and the 

formation of the phosphorites may have influenced by upwelling-induced productivity (den Dulk 

et al., 2000). During the Tertiary and Quaternary the MR was near sea level and probably 

influenced by transgressive and regressive episodes. The rise and fall of sea level may have 
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favoured phosphorite accumulation, or aided in reworking and concentrating phosphorite and 

other authigenic grains (Glenn et al., 1994). 

           The samples were recovered with a gravity corer from the eastern flank of the MR at 470 

m depth (Lat. 21° 24. 4N, Long. 61° 54.7E; Fig. 1).   All samples were collected from a single 

core at 50 cm depth.  We studied three different types of phosphorite samples: samples MRP-1 

and 2 comprise phosphorite nodules of 1-3 cm diameter (Fig. 2A -2D). Sample MRP-3 is made 

up of bioclasts (Fig. 2A) consisting of up to 50% of planktonic foraminifers and interspersed 

basalt and mineral fragments. The planktonic foraminifers (Fig. 2F) are:Orbulina universa 

D’Orbigny’ 1839 (base of zone N9 to Recent), Orbulina bilobata (D Orbigny, 1846), Orbulina 

suturalis Bronnimann, 1951 (base of zone N9 to Recent), Praeorbulina sicana De Stefani, 1950 

(base of zone N8 to lower of zone N9), Globigerinoides trilobus (Reuss), 1850 (Zone N5 to 

Recent), Globigerinoides cf. bisphericus (lower N7 to lower N9), Globorotalia archeomenardii 

Bolli (Zone N6 to lower N10) and Globorotalia praemenardii Cushman and Stainforth 

(transitional form). According to Postuma (1971) and Bolli and Saunders (1985), a similar age of 

~14 -14.5 Ma (Middle Miocene) can be assigned to all of these fossils. Samples MRP-4a and 4b 

are bone fragments (Fig. 2A, 2E) showing apatite fillings in the bone structure (grey areas in Fig. 

2E). The age of the associated sediments is difficult to constrain as the planktonic foraminifers 

are highly fractured. From the stratigraphic position of the phosphorites from the core there is no 

convincing evidence to conclude that these phosphorite samples were reworked at the site. There 

are several findings of Miocene phosphorites in the vicinity of the MR and the NW Arabian Sea 

(Baturin, 1982; Rao et al., 1992; Rao and Lamboy, 1995; Grandjean et al., 1987) that support 

widespread phosphatization during the Miocene.  

3. Analytical methods 

           Thin section-, mineralogical- and scanning- electron microscope (SEM) studies were 

carried out at the National Institute of Oceanography, India. Major- and minor element 

concentrations were determined by microprobe. The REE- and other trace-element 

concentrations were determined with ICP-MS, following the method described by Govindaraju 

(1994). 143Nd/144Nd ratios were determined on a MAT 261 in a dynamic quadruple mass 

collection mode. The εNd  values were calculated with the parameters of Jacobsen and 

Wasserburg (1980). Present-day values for the chondrite uniform reservoir (CHUR) are: 
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147Sm/144Nd = 0.1967, 143Nd/144Nd = 0.512638 relative to 146Nd/144Nd = 0.7219. 87Sr/86Sr ratios 

were measured in a dynamic double mass collection mode. The NIST 987 reference material 

yielded 87Sr/86Sr = 0.710221 ± 11 (N= 22) and the 87Sr/86Sr ratios in Table 3 are reported relative 

to 0.710240 in NIST 987. Other details are given in the footnote of Table 3.   

4. Results  

4.1. Petrological- and mineralogical data  

          The phosphorite samples are depicted in Fig. 2A. In thin section, the large nodules exhibit 

homogeneous light-colored micritic phosphate, surrounded by a thin dark-gray phosphate matrix 

(Fig. 2B). The small nodules reveal phosphate pellets surrounded by a dark-gray phosphate 

matrix (Fig. 2C). Circular to ovoid and elongated voids are ubiquitous and may represent borings 

or sites of formerly biogenic detrital particles that dissolved during phosphatization. The relics of 

microfossils can be found in the center of the pellets (Fig. 2C). The dark-grey portions of the 

phosphate matrix show a spongy texture with hollow sub-spherical components (Fig. 2D). 

Elsewhere rounded to ovoid aggregates with obscured internal structure are aligned  parallel.   

           SEM images show bundles of submicron-size micro-filaments wrapping the nucleus of 

the nodules (Fig. 3A). The filaments are up to 1-2 μm in diameter and comprise several 

submicron-sized tubules (Fig. 3B). The cortex exhibits a porous nanostructure corresponding to 

spherical to ovoid cavities ranging from 0.3 to 0.7 μm in diameter (Fig. 3C-D). In some pores, 

spherical to ovoid-type apatite nanoparticles ∼ 0.2 to 0.4 μm in diameter form globules that 

appear to be hollow (Fig. 3E). Filaments commonly extend across the pores. The phosphate in 

the nucleus of the nodules is dense, yet micro-filaments can be identified (Fig. 3F). Bundled and 

ramified filaments growing upright and radially into fan-shaped microstructures are shown in 

Fig. 3G-H. 

           In the bioclast sample MRP-3 the phosphate is largely confined to the cement (Fig. 2F). It 

consists of at least two types of apatite particles (Fig. 4A-F): type 1 is gray, spherical, large in 

size (1-10 μm), and closely packed. This produces a flocculent texture of the matrix (Fig. 4A). 

Clusters of apatite microparticles of different sizes are set in foraminiferal chambers (Fig. 4B). 

The calcite of the foraminiferal chambers has been replaced by thread-like apatite (Fig. 4C). In 

Fig. 4D, hollow, apatite particles of ~2 μm are encrusted by nanospheres of apatite. Apatite 
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particles of type 2 are light brown, smooth-surfaced with smaller ovoids (arrow in Fig. 4E). They 

occur as aggregates on the surface of type 1 apatite particles (finger in Fig. 4E). There are no 

internal cavities in the type 2 apatite particles (Fig. 4E). Some apatite particles (Fig. 4F) consist 

of individual hexagonal crystals piled upon one another, or occur as prismatic crystals. The 

microstructure of apatite in the cavities of the bone fragments is similar to that of phosphate 

cement in the bioclasts.  

          The nodule- and bone fragments are composed exclusively of carbonate fluorapatite 

(CFA). Calcite is also present as a subordinate component in the bioclasts. Following the method 

of Schuffert et al. (1990) we estimated a carbonate content of 5 to 6 wt. % in the CFA.  

4.2. Geochemical- and 87Sr/86Sr- and 143Nd/144Nd isotopic data  

4.2.1. Major- and minor element concentrations 

           The major- and minor element concentrations are listed in Table 1. The average 

concentrations of CaO (~47 wt. %) and P2O5 (~30 wt. %) in the samples are similar to those in 

phosphorites from other oceans. The CaO/P2O5 ratios of 1.52 to 1.55 overlap the value of 1.54 in 

pure carbonate fluorapatite (McClellan, 1980). CaO/P2O5 ratios of 1.51 to 1.54 in 

authigenic/diagenetic phosphorites from the shelf of Namibia and Peru-Chile are also 

indistinguishable from the MR data (Table 1). K, Al, and Th concentrations are low and those of 

the minor elements SiO2, TiO2, MnO, K2O, and Na2O are similar in the different sample types. 

The concentration of Fe2O3 is highest in the bioclasts (~2.4 wt. %) followed by values of ~1.1 to 

0.5 wt. % in the nodules.   

          Among the trace elements, the Sr concentrations of ~2,000 to 2,400 ppm (Table 2) are 

prominent. Nevertheless, the Sr concentrations are similar to those in biogenic apatite (e.g. 

Schmitz et al., 1991; Vennemann and Hegner, 1998). The chalcophile elements Cu, Ni, Pb 

increase in the sequence bone fragments-nodules-bioclasts (Table 2) as do the concentrations of 

the REE and other lithophile elements Cr, Sc, Co, Ga, Y, Zr, Nb, and Th. 

4.2.2. The REE data 

          The Post-Archean Australian Shale (PAAS) -normalized REE abundances in Fig. 5 

increase from the LREE to the HREE. The patterns reveal a distinct overabundance of La 
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relative to Ce, rather than a negative Ce-anomaly. In addition the phosphorite samples show a 

small and positive Eu-anomaly. For comparison a REE pattern for hydrothermal fluids is shown 

(Klinkhammer et al., 1994). The prominent positive Eu-anomaly and strong fractionation of light 

REE over heavy REE in hydrothermal fluids contrast with the pattern of the phosphorite samples 

and preclude major involvement of hydrothermal fluids in the genesis of the samples. 

4.2.3 The 87Sr/86Sr and 143Nd/144Nd isotopic ratios 

          The 87Sr/86Sr ratios range from 0.709055 in a sample of bone fragments to 0.709124 in 

the bioclasts (Table 3). Due to the very low Rb/Sr ratio in the samples, their 87Sr/86Sr isotopic 

ratios at 14 Ma are indistinguishable from the measured ratios within analytical precision (e.g. 

the initial ratio is only ~10-6 lower than the measured ratio). The range in Sr isotopic ratios 

exceeds the analytical error by a factor of ~7 and indicates significant isotopic heterogeneity 

among the samples. It is noteworthy that the evidence for Sr isotopic heterogeneity also exists in 

samples of similar composition, e.g. the bone fragments (Table 3).  All of these ratios are much 

higher than the 87Sr/86Sr isotopic ratio of ~0.70885 for seawater at 14 Ma (DePaolo, 1986) and 

only slightly lower than in modern seawater ratio of 0.709164 (Vennemann et al., 2001). The 

average stratigraphic ages for the samples as inferred from the seawater curve of Farrel et al. 

(1995) range from ~3 Ma to as young as 0.9 Ma.  

           The initial εNd values of -4.8 to -5.1 for an age of 14 Ma are identical within the analytical 

error of ±0.3 ε-units and contrast the Sr isotopic heterogeneity. They  are intermediate between 

the εNd value of -3.1 measured in ~18 Ma old phosphatic fish debris from the Persian Gulf 

(Grandjean et al., 1987) and the present-day seawater value for the NW Arabian Sea of -8.3 

(Bertram and Elderfield, 1993).   

  5. Discussion  

5.1. Structural evidence for bacterial activity in the nodules 

          The cortex portions of the nodules show abundant microbial filaments and a spongy 

texture due to spherical or ovoid-shaped nanocavities (Fig. 3A-D). The cavities resemble 

microborings caused by endolithic algae/fungi. Perry (1998) reported that microborings caused 

by cyanophytes, chlorophytes, rhodophytes and fungi dominate in the upper photic zone and 
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have been used as paleobathymetric indicators of water depth <20 m. Although it is difficult to 

characterize the organism based on the size of the borings, we suggest that they are caused by 

endolithic algae/fungi. Dix (1991) reported submicron-size (<< 1 μm) microborings in the 

intraclasts of limemud sediments. We interpret the presence of microborings (Fig. 3C-D) as 

evidence for phosphatization in oxic- and shallow-water conditions.  

          The nucleus of the nodules exhibits micro-laminations and a fan-shaped microstructure 

(Fig. 3G-H). Golubic (1976) described similar microstructures in stromatolites and explained 

them with the formation of false branching in heterocystous filamentous cyanophytes. False 

branching occurs because of intensive cell division at certain zones of the trichome. Within the 

Rivulariaceae, some forms show dichotomously branched bundles of filaments (genus 

Gardnerula) whereas others exhibit cushions of densely branched paint-brush type filaments 

(Dichothrix).  We suggest that the fan-shaped microstructure in Fig. 3G-H was produced by 

Rivulariaceaen cyanobacteria, which form nodules in particular in intertidal regions (Golubic, 

1976). As the microbial filaments themselves were phosphatized, it evidently occurred before the 

complete decay of organic matter associated with the sheath of the filaments and was probably 

achieved through metabolic processes during early diagenesis. The microborings and 

microstructures of the nodules thus lend further support for the hypothesis that phosphatization 

occurred in oxic, shallow-water.  

           In Fig. 3E it can be seen that the cortex segment of the nodules shows nanospheres of 

apatite forming big globules. Calcified nanospheres have been interpreted as former nanobacteria 

and were reported from many modern and ancient carbonate deposits as well as in laboratory 

cultures (Folk, 1994; Pedone and Folk, 1996; Chafetz et al., 1998). On the other hand, Kirkland 

et al. (1999) interpreted nanobacteria-like objects in organic-rich environments as of inorganic 

origin, yet their precipitation was considered as induced by bacteria. Kajander and Ciftcigglu 

(1998) and Cisar et al. (2000) doubted the existence of nanobacteria and suggested that 

biomineralization triggered by biological macromolecules, including phospholipids, can lead to 

crystallization of apatite nanoparticles. 

          We have no evidence to decide whether the nanospheres in the nodules are of organic or 

inorganic origin. Since the apatite nanospheres are located within the cortex of the nodules, 
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wherein abundant microbial filaments are present, and associated with nanofilaments (Fig. 3E), 

we presume that microbial activity may have been involved in their formation. 

 5.2. Structural evidence for bacterial activity in the bioclasts   

          Type 1 apatite particles are large, flocculate or form clusters of globular bodies in the 

interstitial pores or in foraminiferal chambers (Fig. 4A-B). They resemble fossilized coccoid 

cyanobacterial colonies or synsedimentary phosphatized remnants of bacterial cell aggregates, as 

described by Soudry and Lewy (1990) and Rao and Lamboy (1995). The individual apatite 

particles or particle clusters are empty (Fig. 4A-B, D) and this finding suggests that the particles 

are primary and phosphatization was restricted to the external surfaces of the cells. This implies 

that phosphatization took place during the active metabolic stage of the cells and before the 

complete decay of organic matter in the cell surface. Martill (1984) suggested that bacterially-

induced mineralization is due to spontaneous interaction between biologically-produced 

metabolites and cations from the environment. It is considered to begin within few hours or days 

after the death of microbial bodies and proceeds at rapid pace. 

          The apatite particles of type 2 are smaller than those in type 1, smooth-surfaced and occur 

as aggregates on the surface of type 1 particles (Fig. 4E). This observation suggests that 

phosphatization occurred in several steps. These particles are also abundant in ancient and 

modern phosphorites and were interpreted as fossilized P-rich bacterial cells (O’Brien et al., 

1981; Garrison and Kastner, 1990). Van Capellen and Berner (1991) synthesized similar apatite 

capsules and interpreted them as inorganic components originating from rapid precipitation of 

phosphate. We find no evidence for an inorganic or organic origin of the particles. However, the 

laboratory experiments by Hirschler et al. (1990) indicated that bacterial mediation is necessary 

for phosphorite formation. The crystalline apatites in Fig. 4F may support the arguments of Van 

Capellen and Berner (1991) who suggested that the initially precipitated phosphate is an 

amorphous or poorly-crystalline meta-stable calcium phosphate, which transforms into 

crystalline apatite depending on the degree of supersaturation of fluorapatite. In Fig. 4C it can be 

seen that dissolution of calcite in the foraminifers and replacement by thread-like apatite seems 

to be the predominant microbial process. Ehrlich (1996) suggested that bacteria interacting with 

mineral particles not only lead to dissolution of minerals but may also initiate precipitation of 
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other minerals. Considering all these findings, we conclude that the microstructures, microbial 

filaments, and apatite microparticles support an origin of the phosphorites by microbial 

processes.   

5.3. Sources of phosphorus and other elements 

          Open-ocean phosphorites typically contain high CaO concentrations of 48 to 52 wt.% and 

CaO/P2O5 ratios of 1.7 to 2 (Table 1). The somewhat lower CaO concentrations of 47 to 48 wt.% 

and CaO / P2O5 ratios of 1.52 to 1.54 in the MR phosphorites are similar to those in pure CFA 

and phosphorites from the organic-rich, high productivity regions off Namibia and Peru (see 

Table 1). The inferred relatively high carbonate concentrations of 5-6 wt. % and fluoride 

concentrations of 2.7 to 3.1 wt. % are consistent with a diagenetic environment with very low 

sedimentation rates (Jarvis et al., 1994). The possible sources of P are discussed below.  

 (a) P associated with detritus and oxyhydroxides: In Table 1 it can be seen that all 

samples are characterized by low abundances of Al, K, and Th precluding presence of significant 

amounts of terrigenous matter. Leaching the samples with 6 N HCl produced only ~2.9 wt. % 

insoluble silicate material in the bioclasts, ~1.2 wt. % in the nodules, and ~0.2 % in the bone 

fragments (see Fig. 6). Furthermore, we found low Fe2O3 concentrations in the samples that are 

negatively correlated with P2O5. These findings imply that P adsorbed on detrital matter or P 

bound to oxy-hydroxides (Krajewski et al., 1994) cannot represent important sources.  

 (b) Fish debris: Due to the fact that the bone fragments (Fig. 2A, 2F) are associated with 

the phosphorite samples, it may be speculated if P from fish debris contributed P (e.g., Suess, 

1981) to the samples. In view of the overall small amount of fish debris in the sediment, we 

consider however this source also as not important.  

 (c) Organic matter: Considering that the MR is located close to the highly productive 

continental margin of Oman, there is the possibity that plankton-derived organic matter may 

delivered P to the sample site. Considering however, the low concentrations of Ba, Cu, and Zn in 

the phosphorites we may preclude that such a process must be subordinate. As has been shown 

by Price and Calvert (1978) and Froelich et al. (1988) phosphorites from high-productivity 

regions (e.g. Namibia and Peru) apparently are characterized by high concentrations of these 
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elements due to involvement of organic matter from marine plankton. On the other hand, the Cr 

concentrations in the nodules and bioclasts, and V concentrations in the bioclasts, are high 

relative to the values in ‘average phosphorite’ (Table 2). Piper (1991, 1994) reported that Cu, Cd, 

Cr and V are incorporated in organic matter and may be of a hydrogenous marine or biogenous 

origin. Brumsack (2006) suggested that Cr is involved in bio-cycling and V usually originates 

from an early diagenetic source and enters the sediment via diffusion from the water column. 

The trace element data thus support the notion that the enrichment of elements was due to 

elemental exchange between the water column and the substrate of the sediment. We suggest that 

the same process may explain the enrichment of P.   

 There is abundant evidence of fossil bacteria / cyanobacteria in the bioclasts and nodules 

(Figs. 3-4) and that phosphatization occurred at oxic, shallow-water conditions. It is therefore 

plausible that organic matter associated with the microbial filaments, sediment, and seawater 

supplied the vital elements and that phosphate precipitation was achieved by microbes associated 

with decaying organic matter at or near the sediment-water interface during early diagenesis.  

5.4. The sources of REE, Nd- and Sr-isotopes 

 The seawater-like REE patterns of the phosphorite samples (Fig. 5) strongly support an 

origin of the REE (and probably also other elements) ultimately from seawater. The small 

negative Ce-anomaly in the samples, when compared to that in seawater from the NW Indian 

Ocean can be explained with the shallow- water conditions at the MR. In such environments Ce 

is more depleted in surface waters than in deep waters due to its oxidative removal (Bertram and 

Elderfield, 1993). Small positive Eu-anomalies may be interpreted as evidence for involvement 

of ridge hydrothermal fluids typically showing a large positive Eu- anomaly due to preferential 

leaching of REE from feldspars in basalt (Michard et al., 1983; Ruhlin and Owen, 1986; 

Grandjean et al., 1987; Oudin and Cocherie, 1988; Elderfield, 1988). However, chondrite-

normalized REE patterns (not shown) do not show positive Eu anomalies. Thus we need to 

explain the Eu-anomalies as due to the normalizing procedure using a shale composition. We 

conclude that the Eu-data preclude involvement of hydrothermal fluids from the basaltic oceanic 

ridge.  
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 Studies on the behavior of the REEs and Nd isotopes in biogenic apatite (e.g., fish bones, 

fish teeth, conodonts) have firmly established that the REE are rapidly incorporated from pore 

waters at the sediment-seawater interface during early diagenesis (e.g., Bernat, 1975; Jarvis, 

1984; McArthur and Walsh, 1984; Staudigel et al., 1985; Elderfield and Pagett, 1986; Grandjean 

et al., 1988; Wright et al., 1987; Oudin and Cocherie, 1988; Stille and Fisher, 1990; Martin and 

Scher, 2004). Inorganic phases (detrital minerals and oxy-hydroxide flocs) and organic phases 

(pelletal and organic debris) with REEs scavenged from the water column are considered 

potential suppliers of REEs to porewaters during early diagenesis (Oudin and Cocherie, 1988). 

As the acid-insoluble residue of samples MRP 1 to 3 yielded Fe-hydroxide flocs we suggest that 

the latter contributed a significant portion of seawater-derived REE. This inference is supported 

by the observation that the bioclast sample MRP 3 with a high Fe-abundance also exhibits high 

REE concentrations whereas the nodule samples MRP 1 and 2 with lower Fe contents reveal 

lower REE concentrations. As Nd is known to behave immobile during diagenesis we suggest 

that the surrounding carbonate-rich sediment typically showing very low Nd concentrations (<1 

ppm Nd; Palmer, 1985) has not contributed significant amounts of Nd to the pore fluids and 

cannot account for the high Nd concentration in some of the samples.  

           Considering these constraints on the behavior of the REE we interpret the εNd values of -

4.9 and -5.0 in the two samples of bone fragments as the seawater value at ~14 Ma. Due to the 

fact that the nodule samples as well as bioclast samples yielded within analytical error identical 

εNd values as in the two samples comprising bone fragments, it is apparent that they must have 

formed from the same water mass at ~14 Ma.  It is not plausible that the similar εNd values in the 

samples could have been produced at different times, as is the case for Sr isotopes (see 

discussion below), considering that seawater in the modern NW Arabian Sea changed rapidly its 

composition during the last 18 Ma from a high εNd value of ~ -3.1 (Grandjean et al., 1987) to a 

very low value of -8.3 (Bertram and Elderfield, 1993).   

           Since the Nd isotopic composition in all samples including those with and without 

evidence for secondary phosphatization is indistinguishable, we suggest that phosphatization 

occurred in a relatively short time. Alternatively, the most recent phospatization processes were 

subordinate and did not affect the primary Nd budget in the samples. 
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 Surprisingly, the 87Sr/86Sr ratios show a wide range of 0.70906 to 0.70912 and are much 

higher than ~0.70885 for seawater at ~14 Ma (DePaolo, 1986). The Sr isotopic range in the 

samples is slightly lower than the present-day seawater ratio of 0.70916 (Vennemann et al., 

2001). The Sr isotopic heterogeneity is also well developed among the two samples comprising 

bone fragment that yielded ratios of 0.70906 and 0.70910. As the Rb-Sr and Sm-Nd isotopic 

systems are coupled, resulting in a covariation of 87Sr/86Sr ratios and εNd values, it must be 

concluded that in the light of the uniform εNd values, the primary Sr isotopic composition of the 

samples has been altered during diagenesis. The unusually young and diverse ages of 0.9 to 3 Ma 

as inferred from the Sr isotope curve of Farrel et al. (1995) are consistent with variable degrees 

of overprinting of the samples with fluids isotopically not much different from modern seawater. 

 This explanation of seawater overprinting is compelling as involvement of fluids with Sr 

leached from Indian ridges with low 87Sr/86Sr isotopic ratios of ~0.7025-0.7040 would produce a 

lower value than ~0.70885 in the samples as indicated for 14 Ma old seawater . Furthermore, 

uptake of Sr remobilized from early Miocene and older carbonate rocks and Fe-Mn oxides would 

also produce 87Sr/86Sr ratios lower than ~0.70885 in the samples. Lastly, involvement of 

porewaters dominated by radiogenic Sr from old detrital terrigenous minerals with values of 

~0.71 and higher can be ruled out as the sediment at the MR is carbonate-rich and thus the 

porewater composition will be controlled by solution-reprecipitation of Sr from carbonate rocks 

(e.g. Richter and DePaolo, 1987).  

 It may also be mentioned that evidence for open-system evolution of 87Sr/86Sr isotopic 

ratios in phosphorites resulting in resetted and unusually young Sr-stratigraphic ages has been 

reported by e.g., McArthur et al. (1990), Compton et al. (1990), Hein et al. (1993), and Stille et 

al. (1994). Modeling the behavior of Sr during diagenesis of carbonate rocks, Richter and 

DePaolo (1987, 1988) found that solution-reprecipitation rates decrease significantly with the 

age and depth of burial of the sediment and that increasing diagenesis resulted in a shift of the 
87Sr/86Sr towards older stratigraphic ages. The latter finding is opposite to that observed in this 

study. It needs to be mentioned that these results were derived from environments with 

sedimentation rates of ~10 to 40 m/Ma which is 300 to 1,200 times higher than at the MR. In a 

comprehensive study of porewater, foraminifera, and biogenic apatite (fish teeth) Martin and 

Scher (2004) reported evidence for Sr isotopic modification towards the composition of 
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porewater that may be more or less radiogenic than ambient seawater. They interpreted the data 

with an open-system behavior of Sr involving continuous exchange of Sr in recrystallizing 

biogenic hydroxy-fluorapatite during burial and diagenesis.  

 The vulnerability of Sr isotopes in biogenic apatite and by inference phosphorite samples 

to exchange with porewater, in combination with the extremely low sedimentation rates at the 

MR provide a framework for interpreting the Sr isotopic data of the MR samples. The 

observation that the 87Sr/86Sr ratios in the MR samples are only slightly lower than the present-

day seawater ratio suggests that the porewater composition to a depth of at least 50 cm is 

probably controlled by solution-reprecipitation of recent carbonate material and/or modern 

seawater. The probably still ongoing Sr exchange in the samples may be facilitated by the porous 

structure of the samples and in particular the very low burial depth and compaction of the 

samples.  

6. Conclusions 

 1. Circa 14 Ma old phosphorites from the Murray Ridge are composed of nodules, 

bioclasts, and bone fragments. The initial substrate of the nodules was an organic-rich microbial 

mat or pellet, and foraminiferal sediment in the case of the bioclasts.  Microborings in the 

nodules suggest that phosphatization occurred at oxic, shallow-water conditions.  

 2. During early diagenesis the bacterial populations may have utilized P from pore waters 

and seawater and they induced precipitation of pure carbonate fluorapatite via metabolic 

activities at or near the sediment water interface.   

 3. Trace element- and Sr-Nd isotopic data document seawater as primary source of the 

chemical composition of the phosphorites. The uniform εNd values of ~- 5 in thesamples are 

interpreted as representing the seawater value at ~14 Ma. The unusually young and highly 

variable Sr isotopic ages can be explained with resetting of the Sr isotopic record in the samples 

with ambient seawater-derived Sr. 
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Figure captions 

Fig. 1. Map of the Arabian Sea and bordering countries. The Murray Ridge and sample locality 
are indicated.  

 
Fig. 2. Photographs of phosphorite samples from the Murray Ridge. (A) Different types of 

phosphorites: N-nodules, Bi-bioclasts, Bo-bone fragments. Thin-section photographs of 
phosphorite nodules (B-C) at low magnification; (D) matrix of nodules showing spongy 
texture and minute circular to ovoid cavities, (E) thin-section of a bone fragment showing 
bone structure and phosphate in voids; (F) thin-section of a bioclast showing planktonic 
foraminifers and phosphate cement.  

 
Fig. 3. SEM images of phosphorite nodules. (A-E) cortex segment at different magnifications, 

showing bundle of microbial filaments (A), microlaminations (B), spherical to ovoid 
nanocavities (C-D), and apatite nanoparticles forming aggregates in pores (E). Nucleus 
segment showing a dense matrix with obscured filaments (F) and Rivulariaceaen 
cyanobacterial filaments (G-H).  

 
Fig. 4. SEM images of cement in bioclasts. Apatite microparticles showing flocculent texture (A) 

and aggregating into clusters in a foraminiferal chamber (B). (C) Foraminiferal chamber 
wall showing dissolution of calcite and replacement by thread-like apatite structures. (D) 
Encrustation of apatite nanoparticles on apatite microparticles. (E) Smaller type 1 apatite 
capsule aggregates (thin arrow) on the surface of larger type 1 apatite particles (finger). 
(F) Small prismatic and tubular apatite crystals.  

 
Fig. 5. REE patterns normalized to Post-Archean Australian shale (normalizing data from Taylor 

and McLennan, 1985). The patterns 1 to 4 refer to the MRP samples in Table 2. For 
comparison REE patterns for seawater off the Oman margin (Bertram and Elderfield 
,1993; concentrations multiplied by 106) and hydrothermal vent fluids (Klinkhammer et 
al., 1994; concentrations multiplied by 104) are shown. 

 
 

 



Table 1. Major- and minor element concentrations in phosphorite samples from the Murray Ridge (MRP). 
Concentrations for phosphorites from other localities are listed for comparison.  

 
 MRP 1 

Nodules 
(35)* 

MRP 2 
Nodules 

(40)* 

MRP 3 
Bioclasts 

(50)* 

4 
(15)* 

5 
(20)* 

6 
 
 

7 8 
(66)* 

SiO2 0.05 
(b.d.-0.22)+ 

0.08 
(b.d-0.24) 

0.06 
(b.d.-0.17) 

0.25 1.99 2.78 0.4 4.46 

Al2O3 0.09 
(b.d.-0.76) 

0.38 
(0.02-1.06) 

0.19 
(0.02-0.26) 0.19 0.56 n.a. 0.03 1.37 

TiO2 0.02 
(b.d.-0.16) 

0.02 
(b.d.-0.1) 

0.02 
(b.d.-0.08) n.a. n.a. n.a. 0.02 n.a. 

Fe2O3
++ 0.49 

(0.21-0.51) 
1.13 

(0.16-7.3) 
2.41 

(0.10-13.2) 2.53 0.61 n.a. 0.02 1.04 

MnO 0.01 
(b.d.-0.07) 

0.02 
(b.d.-0.1) 

0.02 
(b.d.-0.08) n.a. n.a. n.a. n.a. n.a. 

MgO 0.94 
(0.24-1.2) 

0.92 
(0.4-1.6) 

0.83 
(0.55-1.2) 0.49 0.45 0.80 0.71 1.28 

CaO 47.5 
(45.6-50.0) 

47.0 
(42.7-51.8) 

47.4 
(38.4-52.5) 51.97 47.57 50.40 46.21 44.28 

Na2O 0.98 
(0.22-1.52) 

0.95 
(0.21-1.53) 

0.96 
(0.02-0.14) 0.83 0.92 n.a. n.a. 1.15 

K2O 0.06 
(0.01-0.22) 

0.07 
(0.02-0.23) 

0.05 
(0.4-1.8) 0.13 <0.10 0.13 0.09 0.32 

P2O5 31.2 
(27.6-36.3) 

30.4 
(26.6-35.5) 

30.4 
(25.2-34.6) 26.46 27.40 25.30 30.70 28.69 

F- 2.73 
(1.47-4.63) 

2.73 
(1.3-4.72) 

3.09 
(1.33-4.93) 1.20 n.a. 1.99 2.74 3.0 

SO3
2- 1.5 

(1.1-1.8) 
2.0 

(1.5-4.8) 
1.8 

(1.2-5.3) 0.97 1.70 n.a. n.a. 2.10 

F/ P2O5 
 0.09 0.09 0.10 0.05 n.a. 0.08 0.09 0.1 

CaO / 
P2O5 

1.52 1.54 1.55 1.96 1.74 1.99 1.51 1.54 

 

MRP 1, 2, and 3 are samples of this study. * Number of spot analyses by electron microprobe. 
+ Range of concentrations in all spots. ++Total iron as Fe2O3. 

4 – Phosphorites from the Error Seamount, Owen Ridge, Arabian Sea (Rao et al., 1992).  

5 – Phosphorites from Pacific Seamounts (Burnett et al., 1987).  

6 – Phosphorites from the Annon Seamount, Atlantic Ocean (Jones and Goddard, 1979.  

7 - Authigenic phosphorite pellets from offshore Namibia (sample 5800; Thomson et al., 1984).  

8 – Phosphorites from the shelves of Peru and Chile (Burnett et al., 1987). 

n.a. = not analyzed.  



Table 2. Trace element concentrations in phosphorite samples from the Murray Ridge.  
 

 
MRP 1 
Nodules 

MRP 2 
Nodules 

MRP 3 
Bioclasts 

MRP 4a 
Bone 
fragments 

MRP 4b 
Bone 
fragments  

Post- 
Archean 
shale  

MAG 1  Recom-
mended* 
MAG 1  

Ba 56.7 56.9 40.5 40.1 39.6 650 485 479 
Cu 12.7 15.3 19.7 12.0 12.9 50 30.2 30 
Ni 40 43 53 35 36 55 53.6 53 
V 75 77 156 69 52 150 142 140 
Zn 33 25 30 18 26 85 131 130 
Pb 8.1 8.2 12.2 4.8 4.9 20 n.a. n.a. 
Cr 197 83 360 44 39 110 97.5 97 
Co 2.9 2.6 7.2 1.2 1.2 23 20.7 20.4 
Ga 1.7 1.8 2.0 1.2 1.2 20 20.9 20.4 
Rb 3.9 5.2 5.0 1.0 0.7 160 150.9 149 
Sr 2360 2380 2010 2060 2150 200 147.3 146 
Y 39.8 25.2 56.6 5.2 2.9 27 28.4 28 
Zr 16.1 13.6 26.3 2.05 2.48 210 127.6 126 
Sc 4.71 3.96 5.23 2.49 2.26 16 17.4 17.2 
Nb 1.82 0.98 3.4 0.21 0.26 19 12.17 12.0 
Cs 0.26 0.36 0.31 0.04 0.04 15 8.64 8.60 
Hf 0.37 0.29 0.50 0.04 0.05 5 3.65 3.70 
Ta 0.05 0.04 0.09 0.02 0.01 n.a. n.a. n.a. 
Th 0.63 0.58 0.86 0.14 0.18 14.6 n.a. n.a. 
U 43.6 61.0 103 72.9 52.7 3.1 n.a. n.a. 
         
La 10.78 6.70 15.75 1.35 0.96 38 42.86 43 
Ce 13.94 8.30 19.48 1.51 1.24 80 88.44 88 
Pr 1.93 1.05 2.61 0.23 0.18 8.9 9.38 9.3 
Nd 9.24 4.94 12.61 1.02 0.78 32 38.23 38 
Sm 2.23 1.14 2.86 0.26 0.24 5.6 7.51 7.5 
Eu 0.54 0.29 0.72 0.08 0.07 1.2 1.56 1.55 
Gd 2.31 1.22 3.13 0.24 0.19 4.7 5.84 5.8 
Tb 0.47 0.25 0.63 0.05 0.04 0.8 0.96 0.96 
Dy 3.33 1.85 4.43 0.40 0.25 4.4 5.16 5.2 
Ho 0.84 0.49 1.16 0.11 0.07 1.0 1.03 1.02 
Er 2.60 1.51 3.48 0.30 0.20 2.9 2.97 3 
Tm 0.39 0.25 0.59 0.06 0.03 0.4 0.43 0.43 
Yb 2.44 1.55 3.50 0.30 0.17 2.8 2.54 2.6 
Lu 0.42 0.27 0.60 0.06 0.03 0.43 0.39 0.40 
Eu/ 
Eu* 

0.73 0.75 0.73 0.97 1.0 0.71 0.72 0.72 

 

PAAS = Post-Archean Australian Shale  (Taylor and McClennan, 1985).  MAG-1 Marine mud 

(International Standard, * Govindaraju (1994), n.a. = not analyzed. Eu/Eu* =  Eun / Gdn x Smn 
0.5, n = 

normalized to chondrite. 



Table 3. Sr- and Nd isotopic data for phosphorite samples from the Murray Ridge  
 

 87Sr /  86Sr(m) Strat. age+ Nd Sm 147Sm / 144Nd 143Nd / 144Nd(m) εNd (14 Ma) 

MRP 1 nodules 
0.709075 ± 11 

~1.9 Ma 
(1.5-2.7) 9.24 2.23 0.146 0.512370 ± 10 -5.2 (- 5.1) 

MRP 2 
nodules  0.709098 ± 11 

~1.4 Ma 
(1.1-1.9) 4.94 1.14 0.139 0.512382 ± 14 -5.0 (- 4.9) 

MRP 3 
bioclasts 0.709124 ± 10 ~0.9 Ma 

(0.6-1.3) 11.85* 2.68* 0.1368 0.512389 ± 10 -4.9 (- 4.8) 

MRP 4a 
bone fragments  0.709055 ± 9 ~3 Ma 

(2-4.3) 1.02 0.78 0.154 0.512385 ± 14 -4.9 (- 4.9) 

MRP 4b 
bone fragments 

0.709098 ± 8 
~1.4 Ma 
(1.1-1.9) 

0.633* 0.156* 0.1492 0.512377 ± 20 -5.1 (- 5.0) 

 

m = measured ratios; +  Stratigraphic age (and age range) inferred from seawater envelope of Farrell et al. 

1995. *Determined by isotope dilution, other data by ICP-MS from Table 2. 87Sr/86Sr normalized to 
86Sr/88Sr = 0.1194. External precision for 87Sr/86Sr is ~1.1 x 10-5 . 87Sr/86Sr ratios are relative to 0.71024 in 

NIST 987. 143Nd/144Nd normalized to 146Nd/144Nd = 0.7219. External precision for 143Nd/144Nd is ~1.3 x 10-

5. The Ames Nd standard solution prepared at Munich yielded 143Nd/144Nd = 0.512142 ± 13 (2σ, N = 35) 

equivalent to 0.511854 in the La Jolla Nd standard. 

 



 
 
 
 
 
 
 

 



 
 
 

 



 
 



 



 
 

 



 
 
 

 

 




