50 research outputs found

    Extracellular Vesicles in Triple–Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential

    Get PDF
    Triple–negative breast cancer (TNBC) is an aggressive subtype accounting for ~10–20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2–targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in–depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV–based targeted immunotherapies

    Role of Tissue Factor in Mycobacterium tuberculosis-Induced Inflammation and Disease Pathogenesis

    Get PDF
    Tuberculosis (TB) is a chronic lung infectious disease characterized by severe inflammation and lung granulomatous lesion formation. Clinical manifestations of TB include hypercoagulable states and thrombotic complications. We previously showed that Mycobacterium tuberculosis (M.tb) infection induces tissue factor (TF) expression in macrophages in vitro. TF plays a key role in coagulation and inflammation. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth in the lung and dissemination to other organs. Wild-type C57BL/6 and transgenic mice expressing human TF, either very low levels (low TF) or near to the level of wild-type (HTF), in place of murine TF were infected with M.tb via aerosol exposure. Levels of TF expression, proinflammatory cytokines and thrombin-antithrombin complexes were measured post M.tb infection and mycobacterial burden in the tissue homogenates were evaluated. Our results showed that M.tb infection did not increase the overall TF expression in lungs. However, macrophages in the granulomatous lung lesions in all M.tb-infected mice, including low TF mice, showed increased levels of TF expression. Conspicuous fibrin deposition in the granuloma was detected in wild-type and HTF mice but not in low TF mice. M.tb infection significantly increased expression levels of cytokines IFN-γ, TNF-α, IL-6 and IL-1ß in lung tissues. However, no significant differences were found in proinflammatory cytokines among the three experimental groups. Mycobacterial burden in lungs and dissemination into spleen and liver were essentially similar in all three genotypes. Our data indicate, in contrast to that observed in acute bacterial infections, that TF-mediated coagulation and/or signaling does not appear to contribute to the host-defense in experimental tuberculosis

    Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa.

    Get PDF
    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa

    Role of tissue factor in Mycobacterium tuberculosis-induced inflammation and disease pathogenesis.

    No full text
    Tuberculosis (TB) is a chronic lung infectious disease characterized by severe inflammation and lung granulomatous lesion formation. Clinical manifestations of TB include hypercoagulable states and thrombotic complications. We previously showed that Mycobacterium tuberculosis (M.tb) infection induces tissue factor (TF) expression in macrophages in vitro. TF plays a key role in coagulation and inflammation. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth in the lung and dissemination to other organs. Wild-type C57BL/6 and transgenic mice expressing human TF, either very low levels (low TF) or near to the level of wild-type (HTF), in place of murine TF were infected with M.tb via aerosol exposure. Levels of TF expression, proinflammatory cytokines and thrombin-antithrombin complexes were measured post M.tb infection and mycobacterial burden in the tissue homogenates were evaluated. Our results showed that M.tb infection did not increase the overall TF expression in lungs. However, macrophages in the granulomatous lung lesions in all M.tb-infected mice, including low TF mice, showed increased levels of TF expression. Conspicuous fibrin deposition in the granuloma was detected in wild-type and HTF mice but not in low TF mice. M.tb infection significantly increased expression levels of cytokines IFN-γ, TNF-α, IL-6 and IL-1ß in lung tissues. However, no significant differences were found in proinflammatory cytokines among the three experimental groups. Mycobacterial burden in lungs and dissemination into spleen and liver were essentially similar in all three genotypes. Our data indicate, in contrast to that observed in acute bacterial infections, that TF-mediated coagulation and/or signaling does not appear to contribute to the host-defense in experimental tuberculosis

    Estimation of Root zone salinity using SALTMOD -a case study *Corresponding Author

    No full text
    This study aims to estimate the Root zone salinity of salt affected areas of some parts of Gokak and Ramdurg taluks of Belgaum districts and Mudhol taluk of Bagalkot districts, Karnataka, India. The study area falls under semiarid and drought hit areas. The hydro-salinity model "SALTMOD" was applied for this study area, which computes the salt and water balance for the root zone, transition zone and aquifer zone. The model was applied to the selected agriculture plots at Gokak, Mudhol and Ramdurga taluks for the prediction of root-zone salinity and leaching efficiency. The model simulated the soil-profile salinity for 20 years under different conditions, viz. with subsurface drainage and without subsurface drainage. The salinity level shows a decline with an increase of leaching efficiency. The leaching efficiency of 0.2 shows the best match with the actual efficiency under adequate drainage conditions. However, without drainage there is a drastic increase in salinity over the years there by indicating the necessity of artificial drainage system .The model shows a steady increase, though at a slow pace over the years, reaching the levels up to 5.8 ds/m to 9.8 ds/m at the end of the 20 years period. If suitable drainage system is not provided, the study area will further get salinized thus making the land uncultivable. From the present study it is evident that it is necessary to provide proper drainage facilities to control the salinity levels in the study area

    Boosting efferocytosis in alveolar space using BCG vaccine to protect host against influenza pneumonia

    No full text
    <div><p>Efferocytosis by alveolar phagocytes (APs) is pivotal in maintenance of lung homeostasis. Increased efferocytosis by APs results in protection against lethal acute lung injury due to pulmonary infections whereas defective efferocytosis by APs results in chronic lung inflammation. In this report, we show that pulmonary delivery of Bacillus Calmette-Guerin (BCG) significantly enhances efferocytosis by APs. Increased efferocytosis by APs maintains lung homeostasis and protects mice against lethal influenza pneumonia. Intranasally treated wild type C57Bl/6 (WT) mice with BCG showed significant increase in APs efferocytosis in vivo compared to their PBS-treated counterparts. All BCG-treated WT mice survived lethal influenza A virus (IAV) infection whereas all PBS-treated mice succumbed. BCG-induced resistance was abrogated by depleting AP prior to IAV infection. BCG treatment increased uptake, and digestion/removal of apoptotic cells by APs. BCG significantly increased the expression of TIM4 on APs and increased expression of Rab5 and Rab7. We demonstrated that increased efferocytosis by APs through pulmonary delivery of BCG initiated rapid clearance of apoptotic cells from the alveolar space, maintained lung homeostasis, reduced inflammation and protected host against lethal IAV pneumonia.</p></div

    Intranasal treatment with BCG protects mice against lethal influenza infection.

    No full text
    <p>WT mice (9 per group) were treated with either PBS or BCG (either intranasally or subcutaneously), and all mice were infected with a lethal dose (2 LD50) of influenza PR8 virus. Weight loss (A) and mortality (B) were recorded daily. (C)Different groups of mice were treated as for panels A and B. Three and 7 days after influenza infection, mice were sacrificed, lung homogenates were generated and virus load was measured. Depicted data are average of 5 mice per group and error bars show SEM. NS = Not significant. (D) BAL cells from a group of BCG- and PBS-treated mice prior to and after IAV infection were quantified. Depicted data are mean of 5 mice per group. Error bars show SEM. (E-F) <b>Depletion of APs abrogated BCG-mediated protection against lethal influenza infection.</b> Mice were intranasally treated with BCG and 24 hrs prior to influenza PR8 infection (2LD50) they were treated with either liposomal clodronate to deplete APs or PBS-liposome as control. Infected mice were monitored for (E) weight loss and (F) mortality. Mean of weight loss with SEMs are depicted. n = 5. DPI: Days Post Infection.</p
    corecore