7 research outputs found

    Slob, a Novel Protein that Interacts with the Slowpoke Calcium-Dependent Potassium Channel

    Get PDF
    AbstractSlob, a novel protein that binds to the carboxy-terminal domain of the Drosophila Slowpoke (dSlo) calcium-dependent potassium channel, was identified with a yeast two-hybrid screen. Slob and dSlo coimmunoprecipitate from Drosophila heads and heterologous host cells, suggesting that they interact in vivo. Slob also coimmunoprecipitates with the Drosophila EAG potassium channel but not with Drosophila Shaker, mouse Slowpoke, or rat KV1.3. Confocal fluorescence microscopy demonstrates that Slob and dSlo redistribute in cotransfected cells and are colocalized in large intracellular structures. Direct application of Slob to the cytoplasmic face of detached membrane patches containing dSlo channels leads to an increase in channel activity. Slob may represent a new class of multi-functional channel-binding proteins

    AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.

    Get PDF
    Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (

    Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy

    No full text
    ObjectiveTranscranial Focused Ultrasound (tFUS) is a promising new potential neuromodulation tool. However, the safety of tFUS neuromodulation has not yet been assessed adequately. Patients with refractory temporal lobe epilepsy electing to undergo an anterior temporal lobe resection present a unique opportunity to evaluate the safety and efficacy of tFUS neuromodulation. Histological changes in tissue after tFUS can be examined after surgical resection, while further potential safety concerns can be assessed using neuropsychological testing.MethodsNeuropsychological functions were assessed in eight patients before and after focused ultrasound sonication of the temporal lobe at intensities up to 5760 mW/cm2. Using the BrainSonix Pulsar 1002, tFUS was delivered under MR guidance, using the Siemens Magnetom 3T Prisma scanner. Neuropsychological changes were assessed using various batteries. Histological changes were assessed using hematoxylin and eosin staining, among others.ResultsWith respect to safety, the histological analysis did not reveal any detectable damage to the tissue, except for one subject for whom the histology findings were inconclusive. In addition, neuropsychological testing did not show any statistically significant changes in any test, except for a slight decrease in performance on one of the tests after tFUS.SignificanceThis study supports the hypothesis that low-intensity Transcranial Focused Ultrasound (tFUS) used for neuromodulation of brain circuits at intensities up to 5760 mW/cm2 may be safe for use in human research. However, due to methodological limitations in this study and inconclusive findings, more work is warranted to establish the safety. Future directions include greater number of sonications as well as longer exposure at higher intensity levels to further assess the safety of tFUS for modulation of neuronal circuits
    corecore