2 research outputs found

    Metabonomic Profiling of Bladder Cancer

    No full text
    Early diagnosis and life-long surveillance are clinically important to improve the long-term survival of bladder cancer patients. Currently, a noninvasive biomarker that is as sensitive and specific as cystoscopy in detecting bladder tumors is lacking. Metabonomics is a complementary approach for identifying perturbed metabolic pathways in bladder cancer. Significant progress has been made using modern metabonomic techniques to characterize and distinguish bladder cancer patients from control subjects, identify marker metabolites, and shed insights on the disease biology and potential therapeutic targets. With its rapid development, metabonomics has the potential to impact the clinical management of bladder cancer patients in the future by revolutionizing the diagnosis and life-long surveillance strategies and stratifying patients for diagnostic, surgical, and therapeutic clinical trials. An introduction to metabonomics, typical metabonomic workflow, and critical evaluation of metabonomic investigations in identifying biomarkers for the diagnosis of bladder cancer are presented

    Urinary Metabotyping of Bladder Cancer Using Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry

    No full text
    Cystoscopy is the gold standard clinical diagnosis of human bladder cancer (BC). As cystoscopy is expensive and invasive, it compromises patients’ compliance toward surveillance screening and challenges the detection of recurrent BC. Therefore, the development of a noninvasive method for the diagnosis and surveillance of BC and the elucidation of BC progression become pertinent. In this study, urine samples from 38 BC patients and 61 non-BC controls were subjected to urinary metabotyping using two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–TOFMS). Subsequent to data preprocessing and chemometric analysis, the orthogonal partial least-squares discriminant analysis (OPLS-DA, R<sup>2</sup>X = 0.278, R<sup>2</sup>Y = 0.904 and Q<sup>2</sup>Y (cumulative) = 0.398) model was validated using permutation tests and receiver operating characteristic (ROC) analysis. Marker metabolites were further screened from the OPLS-DA model using statistical tests. GC×GC–TOFMS urinary metabotyping demonstrated 100% specificity and 71% sensitivity in detecting BC, while 100% specificity and 46% sensitivity were observed via cytology. In addition, the model revealed 46 metabolites that characterize human BC. Among the perturbed metabolic pathways, our clinical finding on the alteration of the tryptophan-quinolinic metabolic axis in BC suggested the potential roles of kynurenine in the malignancy and therapy of BC. In conclusion, global urinary metabotyping holds potential for the noninvasive diagnosis and surveillance of BC in clinics. In addition, perturbed metabolic pathways gleaned from urinary metabotyping shed new and established insights on the biology of human BC
    corecore