139 research outputs found

    Enhanced effect of liposome-encapsulated amikacin on Mycobacterium avium-M. intracellulare complex infection in beige mice

    Get PDF
    We examined the therapeutic effects of free and liposome-encapsulated amikacin on Mycobacterium avium-M. intracellulare complex infection by using the beige-mouse model of the disease. In the first series of studies, intravenous administration of four weekly doses of 5 mg of amikacin per kg encapsulated in large (approximately 0.4-ÎŒm diameter), unilamellar liposomes arrested the growth of M. avium-M. intracellulare complex organisms in the liver, as measured by CFU counts. M. avium-M. intracellulare complex levels in untreated animals and in those treated with the same dose of free amikacin increased by several orders of magnitude over 8 weeks. Liposome-encapsulated amikacin was also effective against M. avium-M. intracellulare complex organisms in the spleens and kidneys, reducing the CFU counts by about 1,000-fold compared with those of both untreated controls and free-drug-treated mice. In the lungs, a slight reduction in CFU was observed in the liposome-encapsulated-amikacin-treated group, but only at the 8-week point. Neither free nor liposome-encapsulated amikacin reduced the colony counts in the lymph nodes compared with those of control animals. Reductions in CFU in all organs greater than those caused by the liposome preparation could be achieved by intramuscular administration of free amikacin, but only at a 10-fold-higher dose given 6 days a week for 8 weeks. In the second series of studies, we investigated the effects of (i) doubling the dose of liposome-encapsulated amikacin and (ii) increasing the size of the liposomes and prolonging the treatment to five injections. Administration of 10 mg of amikacin per kg in liposomes 2 to 3 ÎŒm in diameter was more effective in the liver than 5 or 10 mg of amikacin per kg in liposomes 0.2 ÎŒm in diameter. A slight reduction in the CFU levels in the lungs was observed with the higher dose, irrespective of liposome size. Our results indicate that liposome-based delivery of amikacin enhances its anti-M. avium-M. intracellulare complex activity, particularly in the liver, spleen, and kidney, and may therefore improve the therapy of this disease

    Zoledronate treatment duration is linked to bisphosphonate‐related osteonecrosis of the jaw prevalence in rice rats with generalized periodontitis

    Full text link
    ObjectivesTo determine the extent that zoledronate (ZOL) dose and duration is associated with bisphosphonate‐related osteonecrosis of the jaw (BRONJ) prevalence in rice rats with generalized periodontitis (PD), characterize structural and tissue‐level features of BRONJ‐like lesions in this model, and examine the specific anti‐resorptive role of ZOL in BRONJ.Materials and MethodsRice rats (n = 228) consumed high sucrose‐casein diet to enhance generalized PD. Groups of rats received 0, 8, 20, 50 or 125 ”g/kg IV ZOL/4 weeks encompassing osteoporosis and oncology ZOL doses. Rats from each dose group (n = 9–16) were necropsied after 12, 18, 24 and 30 weeks of treatment. BRONJ‐like lesion prevalence and tissue‐level features were assessed grossly, histopathologically and by MicroCT. ZOL bone turnover effects were assessed by femoral peripheral quantitative computed tomography, serum bone turnover marker ELISAs and osteoclast immunolabelling.ResultsPrevalence of BRONJ‐like lesions was significantly associated with (a) ZOL treatment duration, but plateaued at the lowest oncologic dose, and (b) there was a similar dose‐related plateau in the systemic anti‐resorptive effect of ZOL. ZOL and BRONJ‐like lesions also altered the structural and tissue‐level features of the jaw.ConclusionThe relationship between BRONJ‐like lesion prevalence and ZOL dose and duration varies depending on the co‐ or pre‐existing oral risk factor. At clinically relevant doses of ZOL, BRONJ‐like lesions are associated with anti‐resorptive activity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149302/1/odi13052.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149302/2/odi13052_am.pd

    Metabolite Cross-Feeding Enhances Virulence in a Model Polymicrobial Infection

    Get PDF
    Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis; however, the molecular mechanisms governing these interactions are not well understood. Development of model systems that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A. actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly, inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial communities

    Outer Membrane Vesicles of Porphyromonas gingivalis Elicit a Mucosal Immune Response

    Get PDF
    We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I∶C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine

    Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alvolar bone resorption by mitochondrial-related mechanisms

    Get PDF
    Background/Objectives: Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats.Methods/Findings: Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.Conclusions: The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.This study was supported by I+D grants from the Spanish Ministry of Education and Science (AGL2008-01057) and the Autonomous Government of Andalusia (AGR832)

    Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia

    Get PDF
    The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium

    Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation

    Get PDF
    BackgroundPeriodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 ¿subgingival¿ bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition.ResultsFollowing 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant.ConclusionsThe gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola
    • 

    corecore