934 research outputs found
Design Thinking for Sustainability and the significance of Stakeholder Engagement in the development of the Circular Economy for the Data Centre Industry
The World Wide Web developed during the 1980s and was formally introduced in 1989; since then it has facilitated rapid communication between people and objects and revolutionised business models and services across all major sectors. Such is the popularity of the technology that 59% of the global population is now ‘connected’ (1).
Digital communication is facilitated by human-centred technology (e.g. laptop and desktop computers and mobile phones) and data centres (DCs) which house digital data processing, networking and storage (ICT) equipment. The sector has already expanded rapidly to manage the increasing volume of data and it is predicted to grow 500% globally by 2030 (2). DC operation is energy intensive and the sector currently consumes 1% global electricity (3). It is also resource intensive and although the mass of materials utilised across the sector is unknown, it is estimated to be millions of tonnes.
Sectoral focus has always been provision of 100% uninterrupted service and performance and although economic and environmental considerations have encouraged operational energy efficiency, the impact of design and manufacture have been largely overlooked and consequently, most DC equipment is designed for a linear economy. This is becoming an increasing problem because the first life of much DC equipment is only 1 to 5 years; to date circular practices such as refurbishment, reuse and recycling at end-of-life are limited by human and technical factors and consequently the sector contributes to the growing global electrical and electronic equipment waste stream.
The CEDaCI project was initiated to kick-start a sectoral Circular Economy ahead of the predicted growth, in order to simultaneously increase resource efficiency and reclamation of Critical Raw Materials and reduce waste. The DC sector is comprised of highly specialised sub-sectors; however it is silo-based and knowledge exchange between sub-sectors is rare. Conversely, a Circular Economy is holistic by default and therefore expertise from all constituent sub-sectors is essential to enable development.
In order to overcome these and other challenges the CEDaCI project employs design-based methodologies, namely the four-stage Double Diamond design process model (introduced by the Design Council in 2004) and Design Thinking (developed and popularised by IDEO from 2009). The importance of stakeholder engagement to the development of the Circular Economy as a whole cannot be under-estimated and the presentation shares examples of tools and practice from the CEDaCI project to illustrate the value of design-process-based strategies to support development of the CE in other sectors.
1. Simon Kemp, Hootesuite Digital 2020 Global Overview Report, 30 January 2020,
https://wearesocial.com/digital-2020
https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media
2. Infiniti Research Ltd., August 2015, High Power Consumption is Driving the Need for Greener Data Centres. Available http://www.technavio.com/blog/high-power-consumpton-is-driving-the-need-for-greener-data-centers. [14 August 2018]
3. Masanet, E., Shehabi, A., Lei, N., Smith, S., and Koomey, J., Recalibrating global data center energy-use estimates Science 28 Feb 2020: Vol. 367, Issue 6481, pp. 984-986 DOI: 10.1126/science.aba3758
4. Brown, T., Change by Design: How Design Thinking Creates New Alternatives for Business and Society (2009) Harper Collins, New York
5. Design Council, Double Diamond Design Methodology (2004) and Evolved Double Diamond Design Methodology (2019) https://www.designcouncil.org.uk/news-opinion/double-diamond-universally-accepted-depiction-design-process https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamon
Recommended from our members
Nuclear Regulatory Commission Report NUREG/CR-1430
Report presenting cladding axial and circumferential temperature estimates, fuel rod radial temperature estimates, and the techniques used to estimate the cladding and fuel temperatures for Power-Cooling-Mismatch Test Series PCM-5
Developing a Circular Economy for the Data Centre Industry – how the CEDaCI project contributes to sustainable decision making
Data centres (DCs) house data processing and storage equipment. The data centre industry (DCI) is evolving rapidly, as society is becoming more dependent on digital technologies. Currently, there are 7.2 million DCs globally and provision is predicted to grow fivefold by 2030. The sector already utilises millions of tonnes of resources, including Critical Raw Materials, and the demand will only increase. DCI is based on a linear economy; recycling and materials reclamation infrastructure are also inadequate. At the end-of-life, many materials are either lost to landfill, incinerated, or unaccounted for. Furthermore, many virgin materials are located in geopolitically sensitive locations, which poses a threat to the supply chain that the sector relies on. The CEDaCI project aims to increase overall sectoral sustainability by addressing the various technical, cultural, and behavioural barriers across the DCI, such as fragmentation and sole focus on the energy efficiency. This paper describes the whole-systems approach and CEDaCI project outputs, including bespoke Eco-design guidelines, strategies, and digital tools to extend product life and recycling, and enable better decision-making to increase circularity in the DCI, prepare and support the implementation of the EU Circular Economy Action Plan and ensure a secure, sustainable resource supply chain
Changes in joint kinetics during learning the longswing on high bar
Biomechanics helps us understand the association between technique changes and performance improvement during learning. The aim of this research was to investigate joint kinetic characteristics of technique during learning of the longswing on the high bar. Twelve male, novice participants took part in the learning study. During swing attempts in 8 weekly testing sessions, kinematic data were collected. Inverse dynamics analysis was performed from known zero forces at the toes to quantify joint moments and power at the hips and shoulders. Key biomechanical constraints that limited performance outcome were identified based on changes in joint kinetics during learning. These constraints were the ability to perform a large shoulder power and to overcome passive kinetics acting during the downswing. Constraints to action at the level of joint kinetics differentially challenge learners and therefore could underpin more individual, specific learning interventions. Functional phases, defined by maximum hyperextension to flexion of the hips and maximum flexion to extension of the shoulders, did not describe the key joint kinetics of the hip and shoulder for novices. The functional phases may serve however to identify novices that were unable to overcome the passive kinetic constraint
Biomechanical energetic analysis of technique during learning the longswing on high bar
Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions
Physiatrists\u27 Professional Opinions of Secondary Complications After SCI
The professional opinions of physiatrists were collected to ascertain the likelihood of occurrence, frequency of hospitalization, and treatment required as a direct result of 13 secondary complications (SCs) of two otherwise healthy males in their mid-20s, one with a C5-C6 tetraplegia and the other with T6 paraplegia spinal cord injury. Physiatrists responded to our online survey and overall, a general consensus was found among practitioners. Descriptive statistics was implemented with details outlining the frequency, mean, standard deviations, and the probability (51% or greater) versus possibility (50% or less) of SC occurrence is provided. Implications for life care planners and recommendations for future research are discussed
Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine
The aim of this investigation was to compare the degree of striatal dopamine-(D2) receptor blockade by two atypical antipsychotic drugs, risperidone and olanzapine. The percentage of D2 receptor occupancy during treatment was calculated by comparing the results of 123I-iodobenzamide SPECT with those from healthy control subjects. Twenty inpatients suffering from schizophrenia or schizoaffective psychosis according to DSM IV/ICD-10 criteria were treated with clinically recommended doses of risperidone and compared with 13 inpatients treated with up to 20 mg olanzapine. Neuroleptic dose and D2 receptor blockade correlated strongly for both risperidone (Pearson r = –0.86, p = 0.0001) and olanzapine (Pearson r = –0.77, p = 0.002). There was no significant difference between the D2 receptor occupancy of the two substances when given in the clinically recommended dose range (unpaired t-test, t= –0.112, p=0.911)
Label-free biophysical markers from whole blood microfluidic immune profiling reveals severe immune response signatures
10.1002/smll.202006123SMALL171
Conversion to Prepectoral Breast Implant Reconstruction after Chest Wall Resection for Desmoid Tumor
Fluvoxamine for aripiprazole-associated akathisia in patients with schizophrenia: a potential role of sigma-1 receptors
<p>Abstract</p> <p>Background</p> <p>Second-generation antipsychotic drugs have been reported to cause fewer incidences of extrapyramidal side effects (EPSs) than typical antipsychotic drugs, but adverse events such as akathisia have been observed even with atypical antipsychotic drugs. Although understanding of the pathophysiology of akathisia remains limited, it seems that a complex interplay of several neurotransmitter systems might play a role in its pathophysiology. The endoplasmic reticulum protein sigma-1 receptors are shown to regulate a number of neurotransmitter systems in the brain.</p> <p>Methods</p> <p>We report on two cases in which monotherapy of the selective serotonin reuptake inhibitor and sigma-1 receptor agonist fluvoxamine was effective in ameliorating the akathisia of patients with schizophrenia treated with the antipsychotic drug aripiprazole.</p> <p>Results</p> <p>The global score on the Barnes Akathisia Scale in the two patients with schizophrenia treated with aripiprazole decreased after fluvoxamine monotherapy.</p> <p>Conclusion</p> <p>Doctors may wish to consider fluvoxamine as an alternative approach in treating akathisia associated with antipsychotic drugs such as aripiprazole.</p
- …