29 research outputs found

    Fingernail Injuries and NASA's Integrated Medical Model

    Get PDF
    The goal of space medicine is to optimize both crew health and performance. Currently, expert opinion is primarily relied upon for decision-making regarding medical equipment and supplies flown in space. Evidence-based decisions are preferred due to mass and volume limitations and the expense of space flight. The Integrated Medical Model (IMM) is an attempt to move us in that direction

    Space Adaptation Back Pain: A Retrospective Study

    Get PDF
    Astronaut back pain is frequently reported in the early phase of space flight as they adapt to microgravity. The epidemiology of space adaptation back pain (SABP) has not been well established. This presentation seeks to determine the exact incidence of SABP among astronauts, develop a case definition of SABP, delineate the nature and pattern of SABP, review available treatments and their effectiveness in relieving SABP; and identify any operational impact of SABP. A retrospective review of all available mission medical records of astronauts in the U.S. space program was performed. It was revealed that the incidence of SABP has been determined to be 53% among astronauts in the U.S. space program; most cases of SABP are mild, self-limited, or respond to available treatment; there are no currently accepted preventive measures for SABP; it is difficult to predict who will develop SABP; the precise mechanism and spinal structures responsible for SABP are uncertain; there was no documented evidence of direction operational mission impact related to SABP; and, that there was the potential for mission impact related to uncontrolled pain, sleep disturbance, or the adverse side effects pf anti-inflammatory medication

    The Space Medicine Exploration Medical Condition List

    Get PDF
    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions

    Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Get PDF
    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions

    Setting a VO2 Max Standard for NASA Astronauts During Spaceflight

    Get PDF
    Aerobic fitness is best measured by Maximal Aerobic Capacity or VO2 Max which is defined as a measure of oxygen utilization and transport. Increased Vo2 max indicates improved oxygen consumption during high level exercise and is widely accepted as a predictor of an individual's likelihood of successfully completing a demanding task. As such, agencies and organizations have adopted VO2 max as part of a comprehensive set of physical requirements. The purpose of this study is to review the literature and existing medical and occupational VO2 max data, to propose a VO2 max standard for NASA astronauts for training and spaceflight

    The Effect of Heroic Medical Care on Mission Medical Outcomes

    Get PDF
    Study Objective: A catastrophic medical event depletes medical resources. What happens to the rest of the missions medical outcomes after such an event? Use Probabilistic Risk Assessment (PRA) to see if we can find out. What is the Integrated Medical Model? PRA model using Monte Carlo methodology; Used to assess mission risk due to in-flight medical events; User defined Design Reference Missions (DRM) (crew, duration, EVA (Extra-Vehicular Activity), etc.); Considers outcomes for 100 medical conditions that have or may occur in-flight; 100,000 trials conducted per DRM

    The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Get PDF
    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight
    corecore