37 research outputs found
Inhibition des Stat3-Signalweges durch Peptid-Aptamere : ein neuer Ansatzpunkt fĂŒr die Tumortherapie
In der vorliegenden Arbeit konnten durch den Einsatz modifizierter Hefe-zwei-Hybrid-Screens erstmals Peptid-Aptamere isoliert werden, die spezifisch mit verschiedenen funktionellen DomĂ€nen von Stat3 interagieren und dadurch den Stat3-Signalweg auf unterschiedlichen Ebenen inhibieren. Als ZieldomĂ€nen im Hefe-zwei-Hybrid-System wurden die Dimerisierungs- bzw. die DNA-BindedomĂ€ne von Stat3 verwendet. Nach der erfolgreichen Identifikation von Peptid-Aptameren im modifizierten Hefe-zwei-Hybrid-System war es zunĂ€chst notwendig, die spezifische Interaktion der isolierten Peptid-Aptamere mit Stat3 zu demonstrieren. Die in vitro Interaktion der isolierten Peptid-Aptamere mit dem gesamten Stat3-MolekĂŒl wurde in Ko-ImmunoprĂ€zipitationsexperimenten gezeigt. Im Folgenden bestĂ€tigte sich die spezifische Interaktion der isolierten Peptid-Aptamere mit ihren jeweiligen funktionellen DomĂ€nen von Stat3 in Hefen mittels Mating-Experimenten. In den nĂ€chsten Schritten sollte die BioaktivitĂ€t der isolierten Peptid-Aptamere bei der Inhibition des Stat3-Signalweges in verschiedenen Zellsystemen validiert werden. ZunĂ€chst konnten in Herc-Zellen, die den Stat3-Signalweg nach exogenem Stimulus (EGF) aktivieren, die molekularen Wirkungs-mechanismen, die der Inhibition des Stat3-Signalweges durch die Peptid-Aptamere zugrunde liegen, aufgeklĂ€rt werden. Durch den Einsatz eines biochemisch-molekularbiologischen Methodenrepertoires (Western Blot Analysen, Reportergen-Analysen, und Gelretardierungsexperimente) zeigte sich, dass die verschiedenen selektionierten Peptid-Aptamere mit dem Aktivierungsszenario des Stat3-Signalweges auf zwei unterschiedlichen Ebenen, der Phosphorylierung bzw. der DNA-Bindung von Stat3, interferieren. Um die mögliche Anwendung der isolierten Peptid-Aptamere als potentielle Stat3-Inhibitoren in Tumorerkrankungen zu analysieren, wurden die Untersuchungen auf Tumorzelllinien mit konstitutiv-aktivem Stat3 (murine Melanomazelllinie B16 und humane Myelomazelllinie U266) ausgeweitet. Durch die zellulĂ€re Applikation der fĂŒr die isolierten Peptid-Aptamere codierenden DNA mittels Transfektion ergaben sich erste Einblicke ĂŒber den Einfluss der isolierten Peptid-Aptamere auf die transkriptionelle AktivitĂ€t von Stat3. In weiteren Untersuchungen konnte eindrucksvoll gezeigt werden, dass durch die transiente Expression eines Peptid-Aptamers (DBD-1) Apoptose in murinen Melanomazellen induziert wird. Die biologische AktivitĂ€t des DBD-1 Peptid-Aptamers wurde dann mit Hilfe einer innovativen Methode zur zellulĂ€ren Applikation von potentiell wirksamen Bio-MolekĂŒlen in eukaryotische Zellen studiert. Dabei konnte im Rahmen der vorliegenden Arbeit die Methode der Proteintransduktion fĂŒr die Applikation von Peptid-Aptameren etabliert werden. Durch den Einsatz der Proteintransduktion lieĂ sich die FunktionalitĂ€t des isolierten DBD-Peptid-Aptamers nicht nur in murinen, sondern auch in humanen Stat3-abhĂ€ngigen Tumorzellen verifizieren. Dabei konnte auch eine Dosis-Wirkungsbeziehung zwischen der Ăberlebensrate von Stat3-abhĂ€ngigen Tumorzellen und der Menge an applizierten Peptid-Aptamer hergestellt werden. DarĂŒber hinaus demonstrieren weitere Ergebnisse, dass das DBD-1 Peptid-Aptamer keinen Einfluss auf die Ăberlebensrate von nicht-Stat3-abhĂ€ngigen Tumorzellen hat, wodurch die hohe SpezifitĂ€t des DBD-1 Peptid-Aptamers bestĂ€tigt wird. ZusĂ€tzlich zu diesen funktionellen Analysen konnte der durch das Peptid-Aptamer induzierte Signalweg, der die Einleitung des programmierten Selbstmordes der Stat3-abhĂ€ngigen Tumorzellen auslöst, charakterisiert werden. Die vorliegenden Daten zeigen zudem die FunktionalitĂ€t der rekombinant exprimierten Peptid-Aptamere fusioniert mit einer ProteintransduktionsdomĂ€ne in einem in vivo Tumormodell in der Maus. FĂŒr diesen tierexperimentellen Ansatz fanden B16-Tumorzellen Verwendung, die nach subkutaner Injektion in MĂ€usen lokale Tumore bilden. In diesem Tumormodell wurde mittels intratumorale Injektion des transduzierbaren DBD-Peptid-Aptamers ein viel versprechender, wachstumshemmender Effekt auf Tumorzellen erzielt. Die Ergebnisse der vorliegenden Arbeit belegen, dass Stat3 ein ideales Zielprotein fĂŒr die Entwicklung neuer Tumortherapeutika ist. Dabei stellt nicht nur die DimerisierungsdomĂ€ne, sondern auch die DNA-BindungsdomĂ€ne ein attraktives Ziel fĂŒr die Inhibition des Transkriptionsfaktors Stat3 dar. Die viel versprechenden Daten sowohl an Tumorzellen als auch im Gesamtorganismus des Maustumormodells, verbunden mit der hier herausgearbeiteten innovativen Applikationstechnik, lassen auf einen Einsatz der isolierten Peptid-Aptamere in der Tumortherapie hoffen. Zudem eröffnen die Daten zur Protein-transduktion von Peptid-Aptameren neue Perspektiven fĂŒr die Applikation von Bio-MolekĂŒlen mittels âProtein-Therapieâ in der molekularen Bio-Medizin
SANS (USH1G) expression in developing and mature mammalian retina
AbstractThe human Usher syndrome (USH) is the most common form of combined deaf-blindness. Usher type I (USH1), the most severe form, is characterized by profound congenital deafness, constant vestibular dysfunction and prepubertal-onset of retinitis pigmentosa. Five corresponding genes of the six USH1 genes have been cloned so far. The USH1G gene encodes the SANS (scaffold protein containing ankyrin repeats and SAM domain) protein which consists of protein motifs known to mediate proteinâprotein interactions. Recent studies indicated SANS function as a scaffold protein in the protein interactome related to USH.Here, we generated specific antibodies for SANS protein expression analyses. Our study revealed SANS protein expression in NIH3T3 fibroblasts, murine tissues containing ciliated cells and in mature and developing mammalian retinas. In mature retinas, SANS was localized in inner and outer plexiform retinal layers, and in the photoreceptor cell layer. Subcellular fractionations, tangential cryosections and immunocytochemistry revealed SANS in synaptic terminals, cellâcell adhesions of the outer limiting membrane and ciliary apparati of photoreceptor cells. Analyses of postnatal developmental stages of murine retinas demonstrated SANS localization in differentiating ciliary apparati and in fully developed cilia, synapses, and cellâcell adhesions of photoreceptor cells.Present data provide evidence that SANS functions as a scaffold protein in USH protein networks during ciliogenesis, at the mature ciliary apparatus, the ribbon synapse and the cellâcell adhesion of mammalian photoreceptor cells. Defects of SANS may cause dysfunction of the entire network leading to retinal degeneration, the ocular symptom characteristic for USH patients
Translational Read-Through Therapy of RPGR Nonsense Mutations
X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, Translama(TM)) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases
C4-dicarboxylates and L-aspartate utilization by Escherichia coli K-12 in the mouse intestine : L-aspartate as a major substrate for fumarate respiration and as a nitrogen source
C4-dicarboxylates, such as fumarate, l-malate and l-aspartate represent substrates for anaerobic growth of Escherichia coli by fumarate respiration. Here, we determined whether C4-dicarboxylate metabolism, as well as fumarate respiration, contribute to colonization of the mammalian intestinal tract. Metabolite profiling revealed that the murine small intestine contained high and low levels of l-aspartate and l-malate respectively, whereas fumarate was nearly absent. Under laboratory conditions, addition of C4-dicarboxylate at concentrations corresponding to the levels of the C4-dicarboxylates in the small intestine (2.6âmmolâkgâ1 dry weight) induced the dcuBp-lacZ reporter gene (67% of maximal) in a DcuS-DcuR-dependent manner. In addition to its role as a precursor for fumarate respiration, l-aspartate was able to supply all the nitrogen required for anaerobically growing E. coli. DcuS-DcuR-dependent genes were transcribed in the murine intestine, and mutants with defective anaerobic C4-dicarboxylate metabolism (dcuSR, frdA, dcuB, dcuA and aspA genes) were impaired for colonizing the murine gut. We conclude that l-aspartate plays an important role in providing fumarate for fumarate respiration and supplying nitrogen for E. coli in the mouse intestine
A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity.
Inherited retinal dystrophies are a major cause of childhood blindness. Here, we describe the identification of a homozygous frameshift mutation (c.1194_1195delAG, p.Arg398Serfs*9) in TUB in a child from a consanguineous UK Caucasian family investigated using autozygosity mapping and whole-exome sequencing. The proband presented with obesity, night blindness, decreased visual acuity, and electrophysiological features of a rod cone dystrophy. The mutation was also found in two of the proband's siblings with retinal dystrophy and resulted in mislocalization of the truncated protein. In contrast to known forms of retinal dystrophy, including those caused by mutations in the tubby-like protein TULP-1, loss of function of TUB in the proband and two affected family members was associated with early-onset obesity, consistent with an additional role for TUB in energy homeostasis.Contract grant sponsors: Wellcome Trust (077016/Z/05/Z, 098497/Z/12/Z,
096106/Z/11/Z); National Institute for Health Research (Moorfields Biomedical Research
Centre and Cambridge Biomedical Research Centre); Fight for Sight; Foundation
Fighting Blindness (USA); the Rosetrees Trust; European Community (FP7/2009/241955
âSYSCILIAâ); The FAUN Foundation (Germany).This is the final published version. It first appeared at http://onlinelibrary.wiley.com/doi/10.1002/humu.22482/abstract
Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in MĂŒller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s)
C21orf2 is mutated in recessive early-onset retinal dystrophy with macular staphyloma and encodes a protein that localises to the photoreceptor primary cilium
Background/aim We have noted a phenotype of early-onset retinal dystrophy with macular staphyloma but without high myopia. The aim of this study is to report the underlying genetic mutations and the subcellular localisation of the gene product in the retina. Methods Retrospective case series (2012-2015); immunohistochemical analyses of mammalian retina for in situ protein localisation. Results All three probands were first noted to have decreased vision at 3-6 years old which worsened over time. At ages 39,37 and 12 years old, all had similar retinal findings: dystrophic changes (retinal pigment epithelium mottling, vessel narrowing), macular staphyloma (despite only mild myopia or high hyperopia), and non-recordable electroretinography. All harboured homozygous mutations in C21orf2, a gene recently suggested to be associated with retinal dystrophy but of unknown function. Two had a frameshift deletion c.436_466del (p.Glu146Serfs*6). The third had a missense mutation affecting a highly conserved residue (p.Cys61Tyr) and was short (below the 3rd percentile) and obese (50th percentile for weight despite short stature). Immunohistochemical studies in human, pig and mouse retinas localised C21orf2 protein to the ciliary structures of the photoreceptor cell (the daughter basal body, the centriole adjacent to the basal body, and the connecting cilium). Conclusions This retinal dystrophy phenotype is caused by recessive mutations in C21orf2 and can be considered a retinal ciliopathy as C21orf2 encodes a protein that localises to photoreceptor ciliary structures. The short stature and obesity noted in the youngest girl suggest that for some patients biallelic C21orf2 mutations may result in syndromic ciliopathy