33 research outputs found

    Psychomotor Retardation Caused by Mutations in MCT8: pathogenesis and therapy

    Get PDF

    Psychomotor Retardation Caused by Mutations in MCT8: pathogenesis and therapy

    Get PDF

    Further insights into the allan-herndon-dudley syndrome: Clinical and functional characterization of a novel MCT8 mutation

    Get PDF
    Background. Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Methods. Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. Results. The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. Conclusions. We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction

    MCT8: From gene to disease and therapeutic approach

    No full text

    Efflux of [<sup>125</sup>I]T3 and [<sup>125</sup>I]T4 by WT and mutated MCT8.

    No full text
    <p>Efflux of [<sup>125</sup>I]T3 (A,C,E) and [<sup>125</sup>I]T4 (B,D,F) for 2–30 min from fibroblasts (A,B), and transiently transfected COS1 cells (C,D) and JEG3 cells (E,F). Efflux is shown as percentage of cellular radioactivity at 0 min and is corrected for protein. Results are presented as mean ± SEM (n = 3). Significance is indicated for control <i>vs</i>. patient fibroblast (A,B) or mutual difference between WT MCT8 and mutants. *P <0.05; **P <0.01; ***P <0.001.</p

    Mutations in MCT8 in Patients with Allan-Herndon-Dudley-Syndrome Affecting Its Cellular Distribution

    No full text
    Monocarboxylate transporter 8 (MCT8) is a thyroid hormone (TH)-specific transporter. Mutations in the MCT8 gene are associated with Allan-Herndon-Dudley Syndrome (AHDS), consisting of severe psychomotor retardation and disturbed TH parameters. To study the functional consequences of different MCT8 mutations in detail, we combined functional analysis in different cell types with live-cell imaging of the cellular distribution of seven mutations that we identified in patients with AHDS. We used two cell models to study the mutations in vitro: 1) transiently transfected COS1 and JEG3 cells, and 2) stably transfected Flp-in 293 cells expressing a MCT8-cyan fluorescent protein construct. All seven mutants were expressed at the protein level and showed a defect in T-3 and T-4 transport in uptake and metabolism studies. Three mutants (G282C, P537L, and G558D) had residual uptake activity in Flp-in 293 and COS1 cells, but not in JEG3 cells. Four mutants (G221R, P321L, D453V, P537L) were expressed at the plasma membrane. The mobility in the plasma membrane of P537L was similar to WT, but the mobility of P321L was altered. The other mutants studied (insV236, G282C, G558D) were predominantly localized in the endoplasmic reticulum. In essence, loss of function by MCT8 mutations can be divided in two groups: mutations that result in partial or complete loss of transport activity (G221R, P321L, D453V, P537L) and mutations that mainly disturb protein expression and trafficking (insV236, G282C, G558D). The cell type-dependent results suggest that MCT8 mutations in AHDS patients may have tissue-specific effects on TH transport probably caused by tissue-specific expression of yet unknown MCT8-interacting proteins. (Molecular Endocrinology 27: 801-813, 2013

    RNA (A), protein expression (B) and cellular distribution (C) of WT and mutant MCT8.

    No full text
    <p><b>A</b> MCT8 mRNA levels relative to housekeeping gene HPRT1 in fibroblasts, and transiently transfected COS1 and JEG3 cells. <b>B</b> Western blots of lysates of transiently transfected COS1 and JEG3 cells. The blots show a specific MCT8 monomer band of 60 kDa and homodimer band of 120 kDa. GAPDH was used as a housekeeping protein. <b>C</b> Confocal imaging of transiently transfected and probed JEG3 cells. The cellular distribution of MCT8 proteins is shown in green, nuclear staining with Hoechst in blue, and plasma membrane (PM) staining with CellMASK in red. The yellow signal in the composite image reflects co-localization of the PM marker and MCT8, indicating that MCT8 is expressed at the PM. Images were deconvolved and corrected for chromatic shift using Huygens. Contrast was enhanced to optimize visualization. Scale bar represents 10 μm.</p

    Pedigree of the family with AHDS.

    No full text
    <p>The black squares reflect affected males. Circles with a dot represent unaffected heterozygous female carriers. Diamond indicates a pregnancy. Slashed symbols indicate deceased individuals.</p
    corecore