8,886 research outputs found

    Implications of Spontaneous Glitches in the Mass and Angular Momentum in Kerr Space-Time

    Get PDF
    The outward-pointing principal null direction of the Schwarzschild Riemann tensor is null hypersurface-forming. If the Schwarzschild mass spontaneously jumps across one such hypersurface then the hypersurface is the history of an outgoing light-like shell. The outward-- pointing principal null direction of the Kerr Riemann tensor is asymptotically (in the neighbourhood of future null infinity) null hypersurface-forming. If the Kerr parameters of mass and angular momentum spontaneously jump across one such asymptotic hypersurface then the asymptotic hypersurface is shown to be the history of an outgoing light-like shell and a wire singularity-free spherical impulsive gravitational wave.Comment: 16 pages, TeX, no figures, accepted for publication in Phys. Rev.

    X-Ray Observations of Black Widow Pulsars

    Get PDF
    We describe the first X-ray observations of five short orbital period (PB<1P_B < 1 day), Îł\gamma-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124−-3653, J1810+1744, and J2256−-1024 are `black-widow' pulsars, with degenerate companions of mass â‰Ș0.1M⊙\ll0.1 M_{\odot}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback' with a near Roche-lobe filling ∌\sim0.2 solar mass non-degenerate companion. Data were taken using the \textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256−-1024, show significant orbital variability while PSR J1124−-3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission and is similar to what has been detected in the low-mass X-ray binary to millisecond pulsar transition object PSR J1023+0038.Comment: 8 pages, 6 figures, 2 tables, submitted to Ap

    Errors in kinematic distances and our image of the Milky Way Galaxy

    Get PDF
    Errors in the kinematic distances, under the assumption of circular gas orbits, were estimated by performing synthetic observations of a model disk galaxy. It was found that the error is < 0.5 kpc for most of the disk when the measured rotation curve was used, but larger if the real rotation curve is applied. In both cases, the error is significantly larger at the positions of the spiral arms. The error structure is such that, when kinematic distances are used to develope a picture of the large scale density distribution, the most significant features of the numerical model are significantly distorted or absent, while spurious structure appears. By considering the full velocity field in the calculation of the kinematic distances, most of the original density structures can be recovered.Comment: Accepted for publication in A

    Spectral Energy Distributions for Disk and Halo M--Dwarfs

    Get PDF
    We have obtained infrared (1 to 2.5 micron) spectroscopy for 42 halo and disk dwarfs with spectral type M1 to M6.5. These data are compared to synthetic spectra generated by the latest model atmospheres of Allard & Hauschildt. Photospheric parameters metallicity, effective temperature and radius are determined for the sample. We find good agreement between observation and theory except for known problems due to incomplete molecular data for metal hydrides and water. The metal-poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The derived effective temperatures for the sample range from 3600K to 2600K; at these temperatures grain formation and extinction are not significant in the photosphere. The derived metallicities range from solar to one-tenth solar. The radii and effective temperatures derived agree well with recent models of low mass stars.Comment: 24 pages including 13 figures, 4 Tables; accepted by Ap

    Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion

    Get PDF
    This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V

    The Distance to the Soft Gamma Repeater SGR 1627-41

    Get PDF
    We report millimeter observations of the line of sight to the recently discovered Soft Gamma Repeater, SGR 1627-41, which has been tentatively associated with the supernova remnant SNR G337.0-0.1 Among the eight molecular clouds along the line of sight to SGR 1627-41, we show that SNR G337.0-0.1 is probably interacting with one of the most massive giant molecular clouds (GMC) in the Galaxy, at a distance of 11 kpc from the sun. Based on the high extinction to the persistent X-ray counterpart of SGR 1627-41, we present evidence for an association of this new SGR with the SNR G337.0-0.1; they both appear to be located on the near side of the GMC. This is the second SGR located near an extraordinarily massive GMC. We suggest that SGR 1627-41 is a neutron star with a high transverse velocity (~ 1,000 \kms) escaping the young (~ 5,000 years) supernova remnant G337.0-0.1Comment: 17 pages, including 2 figures. Accepted for publication in the Astrophysical Journal Letter

    Metastable dark matter mechanisms for INTEGRAL 511 keV Îł\gamma rays and DAMA/CoGeNT events

    Full text link
    We explore dark matter mechanisms that can simultaneously explain the galactic 511 keV gamma rays observed by INTEGRAL/SPI, the DAMA/LIBRA annual modulation, and the excess of low-recoil dark matter candidates observed by CoGeNT. It requires three nearly degenerate states of dark matter in the 4-7 GeV mass range, with splittings respectively of order an MeV and a few keV. The top two states have the small mass gap and transitions between them, either exothermic or endothermic, can account for direct detections. Decays from one of the top states to the ground state produce low-energy positrons in the galaxy whose associated 511 keV gamma rays are seen by INTEGRAL. This decay can happen spontaneously, if the excited state is metastable (longer-lived than the age of the universe), or it can be triggered by inelastic scattering of the metastable states into the shorter-lived ones. We focus on a simple model where the DM is a triplet of an SU(2) hidden sector gauge symmetry, broken at the scale of a few GeV, giving masses of order \lsim 1 GeV to the dark gauge bosons, which mix kinetically with the standard model hypercharge. The purely decaying scenario can give the observed angular dependence of the 511 keV signal with no positron diffusion, while the inelastic scattering mechanism requires transport of the positrons over distances \sim 1 kpc before annihilating. We note that an x-ray line of several keV in energy, due to single-photon decays involving the top DM states, could provide an additional component to the diffuse x-ray background. The model is testable by proposed low-energy fixed target experiments.Comment: 27 pp, 19 figures; v2. minor clarification, added refs; v3. corrected observed rate of positron production, added new section responding to criticisms of arXiv:0904.1025; v4. corrected typos in eqs. (6) and (40
    • 

    corecore