4 research outputs found

    A conceptual framework for the emerging discipline of conservation physiology

    Get PDF
    Current rates of biodiversity decline are unprecedented and largely attributed to anthropogenic influences. Given the scope and magnitude of conservation issues, policy and management interventions must maximize efficiency and efficacy. The relatively new field of conservation physiology reveals the physiological mechanisms associated with population declines, animal- environment relationships and population or species tolerance thresholds, particularly where these relate to anthropogenic factors that necessitate conservation action. We propose a framework that demonstrates an integrative approach between physiology, conservation and policy, where each can inform the design, conduct and implementation of the other. Each junction of the conservation physiology process has the capacity to foster dialogue that contributes to effective implementation, monitoring, assessment and evaluation. This approach enables effective evaluation and implementation of evidence-based conservation policy and management decisions through a process of ongoing refinement, but may require that scientists (from the disciplines of both physiology and conservation) and policy-makers bridge interdisciplinary knowledge gaps. Here, we outline a conceptual framework that can guide and lead developments in conservation physiology, as well as promote innovative research that fosters conservation-motivated policy

    Twenty actions for a “good anthropocene”—perspectives from early-career conservation professionals

    No full text
    Humans are now recognized as the main drivers of environmental change, leaving the future of our planet dependent on human action or inaction. Although the outlook of our planet is often depicted in a “doom and gloom” manner due to recent troubling environmental trends, we suggest that a “good Anthropocene” (in which human quality of life may be maintained or improved without cost to the environment) is attainable if we engage in adaptive, multi-disciplinary actions capable of addressing the socio-ecological issues of today and tomorrow. Early-career conservation scientists and practitioners have an unmatched understanding of novel technologies and social connectivity and, as those left with the ever-growing responsibility to be the problem solvers of the attributed increasing environmental consequences of living in the Anthropocene, their perspectives on steps towards a good Anthropocene are valuable. Here we present a list of 20 actions derived by early-career conservation scientists and practitioners for conservationists to help achieve a good Anthropocene that utilize the social connectivity and technology of today. Central to these actions are the notions that multi-, inter-, and trans-disciplinary collaboratives that embrace diverse world views need to be integrated into decision-making processes; training and outreach platforms need to communicate both environmental challenges and solutions broadly; and conservation successes need to be acknowledged and disseminated in a forward-looking, adaptive capacity. Together the 20 actions identified here reinforce the underlying paradigm shift that must accompany living in the Anthropocene, given that biodiversity and healthy ecosystems are requisite for sustained human life. By sharing this list of actions, we look to promote positive socio-environmental changes towards the collective goal of achieving a good Anthropocene

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (. https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases

    Bibliography

    No full text
    corecore