79 research outputs found

    Naringenin Prevents Dyslipidemia, Apolipoprotein B Overproduction, and Hyperinsulinemia in LDL Receptor–Null Mice With Diet-Induced Insulin Resistance

    Get PDF
    OBJECTIVE: The global epidemic of metabolic syndrome and its complications demands rapid evaluation of new and accessible interventions. Insulin resistance is the central biochemical disturbance in the metabolic syndrome. The citrus-derived flavonoid, naringenin, has lipid-lowering properties and inhibits VLDL secretion from cultured hepatocytes in a manner resembling insulin. We evaluated whether naringenin regulates lipoprotein production and insulin sensitivity in the context of insulin resistance in vivo. RESEARCH DESIGN AND METHODS: LDL receptor-null (Ldlr(-/-)) mice fed a high-fat (Western) diet (42% calories from fat and 0.05% cholesterol) become dyslipidemic, insulin and glucose intolerant, and obese. Four groups of mice (standard diet, Western, and Western plus 1% or 3% wt/wt naringenin) were fed ad libitum for 4 weeks. VLDL production and parameters of insulin and glucose tolerance were determined. RESULTS: We report that naringenin treatment of Ldlr(-/-) mice fed a Western diet corrected VLDL overproduction, ameliorated hepatic steatosis, and attenuated dyslipidemia without affecting caloric intake or fat absorption. Naringenin 1) increased hepatic fatty acid oxidation through a peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1alpha/PPARalpha-mediated transcription program; 2) prevented sterol regulatory element-binding protein 1c-mediated lipogenesis in both liver and muscle by reducing fasting hyperinsulinemia; 3) decreased hepatic cholesterol and cholesterol ester synthesis; 4) reduced both VLDL-derived and endogenously synthesized fatty acids, preventing muscle triglyceride accumulation; and 5) improved overall insulin sensitivity and glucose tolerance. CONCLUSIONS: Thus, naringenin, through its correction of many of the metabolic disturbances linked to insulin resistance, represents a promising therapeutic approach for metabolic syndrome

    The Induction of MicroRNA Targeting IRS-1 Is Involved in the Development of Insulin Resistance under Conditions of Mitochondrial Dysfunction in Hepatocytes

    Get PDF
    BACKGROUND: Mitochondrial dysfunction induces insulin resistance in myocytes via a reduction of insulin receptor substrate-1 (IRS-1) expression. However, the effect of mitochondrial dysfunction on insulin sensitivity is not understood well in hepatocytes. Although research has implicated the translational repression of target genes by endogenous non-coding microRNAs (miRNA) in the pathogenesis of various diseases, the identity and role of the miRNAs that are involved in the development of insulin resistance also remain largely unknown. METHODOLOGY: To determine whether mitochondrial dysfunction induced by genetic or metabolic inhibition causes insulin resistance in hepatocytes, we analyzed the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in SK-Hep1 hepatocytes. We used qRT-PCR to measure cellular levels of selected miRNAs that are thought to target IRS-1 3' untranslated regions (3'UTR). Using overexpression of miR-126, we determined whether IRS-1-targeting miRNA causes insulin resistance in hepatocytes. PRINCIPAL FINDINGS: Mitochondrial dysfunction resulting from genetic (mitochondrial DNA depletion) or metabolic inhibition (Rotenone or Antimycin A) induced insulin resistance in hepatocytes via a reduction in the expression of IRS-1 protein. In addition, we observed a significant up-regulation of several miRNAs presumed to target IRS-1 3'UTR in hepatocytes with mitochondrial dysfunction. Using reporter gene assay we confirmed that miR-126 directly targeted to IRS-1 3'UTR. Furthermore, the overexpression of miR-126 in hepatocytes caused a substantial reduction in IRS-1 protein expression, and a consequent impairment in insulin signaling. CONCLUSIONS/SIGNIFICANCE: We demonstrated that miR-126 was actively involved in the development of insulin resistance induced by mitochondrial dysfunction. These data provide novel insights into the molecular basis of insulin resistance, and implicate miRNA in the development of metabolic disease

    Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins

    Get PDF
    Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling

    Constitutive Expression of Insulin Receptor Substrate (IRS)-1 Inhibits Myogenic Differentiation through Nuclear Exclusion of Foxo1 in L6 Myoblasts

    Get PDF
    Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis

    Insulin signalling and the regulation of glucose and lipid metabolism

    Full text link
    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62568/1/414799a.pd
    corecore