1,058 research outputs found

    Phase diagram of congested traffic flow: an empirical study

    Full text link
    We analyze traffic data from a highway section containing one effective on-ramp. Based on two criteria, local velocity variation patterns and expansion (or nonexpansion) of congested regions, three distinct congested traffic states are identified. These states appear at different levels of the upstream flux and the on-ramp flux, thereby generating a phase diagram of the congested traffic flow. Compared to our earliear reports (including cond-mat/9905292) based on 14 day traffic data, the present paper uses a much larger data set (107 days) and the analysis is carried in a more systematic way, which leads to the modification of a part of interpretation in the earlier reports. Observed traffic states are compared with recent theoretical analyses and both agreeing and disagreeing features are found.Comment: More extensive and systematic version of earlier reports (including cond-mat/9905292). A part of interpretation in earlier reports is modified. 6 two-column pages. To appear in Phys. Rev. E (tentatively scheduled for Oct. 1 issue

    Geodesic Deviation in Kaluza-Klein Theories

    Full text link
    We study in detail the equations of the geodesic deviation in multidimensional theories of Kaluza-Klein type. We show that their 4-dimensional space-time projections are identical with the equations obtained by direct variation of the usual geodesic equation in the presence of the Lorentz force, provided that the fifth component of the deviation vector satisfies an extra constraint derived here.Comment: 5 pages, Revtex, 1 figure. To appear in Phys. Rev. D (Brief Report

    Covariant EBK quantization of the electromagnetic two-body problem

    Full text link
    We discuss a method to transform the covariant Fokker action into an implicit two-degree-of-freedom Hamiltonian for the electromagnetic two-body problem with arbitrary masses. This dynamical system appeared 100 years ago and it was popularized in the 1940's by the still incomplete Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. The Hamiltonian formalism is then used to motivate an EBK quantization based on the classical trajectories with a non-perturbative formula that predicts energies free of infinities.Comment: 21 page

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Steady state solutions of hydrodynamic traffic models

    Full text link
    We investigate steady state solutions of hydrodynamic traffic models in the absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown that typical hydrodynamic models possess seven different types of inhomogeneous steady state solutions. The seven solutions include those that have been reported previously only for microscopic models. The characteristic properties of wide jam such as moving velocity of its spatiotemporal pattern and/or out-flux from wide jam are shown to be uniquely determined and thus independent of initial conditions of dynamic evolution. Topological considerations suggest that all of the solutions should be common to a wide class of traffic models. The results are discussed in connection with the universality conjecture for traffic models. Also the prevalence of the limit-cycle solution in a recent study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure

    Presence of Many Stable Nonhomogeneous States in an Inertial Car-Following Model

    Full text link
    A new single lane car following model of traffic flow is presented. The model is inertial and free of collisions. It demonstrates experimentally observed features of traffic flow such as the existence of three regimes: free, fluctuative (synchronized) and congested (jammed) flow; bistability of free and fluctuative states in a certain range of densities, which causes the hysteresis in transitions between these states; jumps in the density-flux plane in the fluctuative regime and gradual spatial transition from synchronized to free flow. Our model suggests that in the fluctuative regime there exist many stable states with different wavelengths, and that the velocity fluctuations in the congested flow regime decay approximately according to a power law in time.Comment: 4 pages, 4 figure

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.

    Deterministic approach to microscopic three-phase traffic theory

    Full text link
    Two different deterministic microscopic traffic flow models, which are in the context of the Kerner's there-phase traffic theory, are introduced. In an acceleration time delay model (ATD-model), different time delays in driver acceleration associated with driver behaviour in various local driving situations are explicitly incorporated into the model. Vehicle acceleration depends on local traffic situation, i.e., whether a driver is within the free flow, or synchronized flow, or else wide moving jam traffic phase. In a speed adaptation model (SA-model), vehicle speed adaptation occurs in synchronized flow depending on driving conditions. It is found that the ATD- and SA-models show spatiotemporal congested traffic patterns that are adequate with empirical results. In the ATD- and SA-models, the onset of congestion in free flow at a freeway bottleneck is associated with a first-order phase transition from free flow to synchronized flow; moving jams emerge spontaneously in synchronized flow only. Differences between the ATD- and SA-models are studied. A comparison of the ATD- and SA-models with stochastic models in the context of three phase traffic theory is made. A critical discussion of earlier traffic flow theories and models based on the fundamental diagram approach is presented.Comment: 40 pages, 14 figure

    Sub-linear radiation power dependence of photo-excited resistance oscillations in two-dimensional electron systems

    Full text link
    We find that the amplitude of the RxxR_{xx} radiation-induced magnetoresistance oscillations in GaAs/AlGaAs system grows nonlinearly as APαA \propto P^{\alpha} where AA is the amplitude and the exponent α<1\alpha < 1. %, with α1/2\alpha \rightarrow 1/2 in %the low temperature limit. This striking result can be explained with the radiation-driven electron orbits model, which suggests that the amplitude of resistance oscillations depends linearly on the radiation electric field, and therefore on the square root of the power, PP. We also study how this sub-linear power law varies with lattice temperature and radiation frequency.Comment: 5 pages, 3 figure

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
    corecore