5,309 research outputs found

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    Recent Progress in Vector Vortex Coronagraphy

    Get PDF
    The optical vortex coronagraph has great potential for enabling high-contrast observations very close to bright stars, and thus for reducing the size of space telescopes needed for exoplanet characterization missions. Here we discuss several recent developments in optical vortex coronagraphy. In particular, we describe multi-stage vortex configurations that allow the use of on-axis telescopes for high-contrast coronagraphy, and also enable the direct measurement of the amplitudes and phases of focal plane speckles. We also briefly describe recent laboratory demonstrations of the optical properties of the dual-stage vortex, and of the broadband performance of single stage vortex masks. Indeed, the demonstrated performance of the vector vortex phase masks already in hand, ≈ 10^(-8), is approximately that needed for an initial coronagraphic mission, such as an exoplanet explorer, aimed at detecting exozodiacal light and jovian exoplanets

    Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study

    Full text link
    We present ab initio local-density-functional electronic structure calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically stable reconstructions, namely the N adatom, N3 triangle models on the (111), the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are investigated. Band structure and properties of the surface states are discussed in detail.Comment: 8 pages, 12 figure

    Single 3dd transition metal atoms on multi-layer graphene systems: electronic configurations, bonding mechanisms and role of the substrate

    Full text link
    The electronic configurations of Fe, Co, Ni, and Cu adatoms on graphene and graphite have been studied by x-ray magnetic circular dichroism and charge transfer multiplet theory. A delicate interplay between long-range interactions and local chemical bonding is found to influence the adatom equilibrium distance and magnetic moment. The results for Fe and Co are consistent with purely physisorbed species having, however, different 3dd-shell occupancies on graphene and graphite (dn+1d^{n+1} and dnd^n, respectively). On the other hand, for the late 3dd metals Ni and Cu a trend towards chemisorption is found, which strongly quenches the magnetic moment on both substrates.Comment: 7 pages, 4 figure

    Multipole Ordering and Fluctuations in f-Electron Systems

    Full text link
    We investigate effects of multipole moments in f-electron systems both from phenomenological and microscopic viewpoints. First, we discuss significant effects of octupole moment on the magnetic susceptibility in a paramagnetic phase. It is found that even within mean-field approximation, the magnetic susceptibility deviates from the Curie-Weiss law due to interactions between dipole and octupole moments. Next, we proceed to a microscopic theory for multipole ordering on the basis of a j-j coupling scheme. After brief explanation of a method to derive multipole interactions from the ff-electron model, we discuss several multipole ordered phases depending on lattice structure. Finally, we show our new development of the microscopic approach to the evaluation of multipole response functions. We apply fluctuation exchange approximation to the f-electron model, and evaluate multipole response functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200

    In-plane magnetic anisotropy of Fe atoms on Bi2_2Se3_3(111)

    Full text link
    The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on a prototypical 3D topological insulator Bi2_2Se3_3 using local low temperature scanning tunneling microscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi2_2Se3_3 surface, in the coverage range 1\approx 1% are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface-plane, contrary to what was assumed in recent investigations on the opening of a gap. Using \textit{ab initio} approaches, we demonstrate that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects.Comment: 5 pages, 3 figures, typos correcte
    corecore