64 research outputs found

    The composition and height of saplings capturing silvicultural gaps at two long-term experiments in managed northern hardwood forests

    Get PDF
    Managing forests for mixtures of canopy species promotes future resilience and mitigates risks of catastrophic resource loss. This study describes the compositions, heights, and locations within openings of gap-capturing saplings in two long-term group-selection experiments in managed northern hardwoods. We expected opening size to affect the composition of gap-capturing saplings and that composition would match advance regeneration where relatively large stems remained following harvest. We also expected sapling height to respond positively to opening size, but plateau in gap areas above 200 m2, and legacy-tree retention to negatively affect sapling height. In two group-selection experiments, we found that the composition of gap-capturing saplings was not affected by opening size at 15 and 23 years post-harvest, respectively, and that composition matched advance regeneration only when larger stems (\u3e2.5 cm breast height, dbh) were removed during harvest. Gap-capturing sapling composition did not match the surrounding canopy in either study site. Sapling height was positively correlated with gap area, but, as we expected, plateaued in larger openings. In openings without legacy-retention, gap area did not significantly predict sapling height in openings larger than 100–200 m2, whereas this threshold was between 300–400 m2 in openings with single legacy-tree retention. Sapling height was negatively associated with distance into openings when legacy-trees were present. Group selection appears to recruit modestly higher proportions of shade-midtolerant and intolerant species to the canopy compared to adjacent unmanaged second-growth or managed, uneven-aged northern hardwoods

    Influence of Mature Overstory Trees on Adjacent 12-Year Regeneration and the Woody Understory: Aggregated Retention versus Intact Forest

    Get PDF
    Retention harvesting, an approach that intentionally retains legacy features such as mature overstory trees, provides options for achieving ecological objectives. At the same time, retained overstory trees may compete with the nearby recovering understory for resources, and much remains to be learned about potential trade-offs with regeneration objectives, particularly over extended time periods. We assessed the influence of aggregated retention (reserved mature overstory and understory patches) versus intact forest on structure and productivity (standing biomass) of the adjacent woody understory and regeneration 12 years after harvest in northern Minnesota, USA. Each site was dominated by Populus tremuloides Michx., a species that regenerates prolifically via root sprouts following disturbance. Overall, fewer differences than expected occurred between the effects of intact forest and aggregated retention on regeneration, despite the small size (0.1 ha) of aggregates. Instead, harvest status and distance from harvest edge had a greater influence on structure and standing woody biomass. Proximity to aggregates reduced large sapling biomass (all species, combined) relative to open conditions, but only up to 5 m into harvested areas. This suggests the trade-off for achieving productivity objectives might be minimal if managers use retention aggregates in this region to achieve ecological objectives and meet management guidelines

    Complex regeneration responses of eight tree species to partial harvest in mixedwood forests of northeastern North America

    Get PDF
    Ecosystem-based forest management associated with partial harvesting (PH) is intended to balance ecological and economic values of sustainable forest management. The potential for delayed growth response and elevated mortality of advance regeneration following PH remains a critical concern, and may present a barrier to more widespread implementation of this approach. We used 835 permanent continuous forest inventory plots to examine the rate and time course of species-specific regeneration growth and mortality of eight tree species in the first fifteen years following operational partial harvests in the mixed-species forests of Maine, United States. We aimed to provide a quantitative understanding on how regeneration of different species responded to PH in terms of growth and mortality. In addition, we evaluated how the patterns and magnitudes of growth and mortality responses developed over time, if these responses occur gradually or suddenly, and if the patterns of the responses were persistent. We found that the response magnitude, temporal trajectories of responses, and the length of initial lag-period largely varied across species, PH treatments, and the variables examined. For sapling diameter growth, paper birch (Betula papyrifera Marshall) and red maple (Acer rubrum L.) showed immediate responses to high-intensity PH, while a five-year lag-period was observed in balsam fir (Abies balsamea (L.) Mill.), American beech (Fagus grandifolia Ehrh.), red spruce (Picea rubens Sarg.) and eastern hemlock (Tsuga canadensis (L.) Carri`ere) and a 10-year lag period in northern white-cedar (Thuja occidentalis L.). The initial increase in sapling mortality was observed in balsam fir, American beech, red maple and northern white-cedar, but not in other species. Sapling survival reached a stable state irrespective of species after the initial five-years following harvests. In partially harvested stands, identifying preharvest conditions related to postharvest density, growth, and mortality was complex and interacted with time since harvest. Our results suggest that broad application of PH only results in species-specific gains, losses, and delays in regeneration responses within mixed-species stands. Future research should consider PH in combination with other treatments to initiate immediate responses to a wider range of species.We thank to US Forest Service Forest Inventory and Analysis (FIA) for access to the long-term database. Funding was provided by the United States National ScienceFoundation’s Center for Advanced Forestry Systems (#1915078) and R-II Track-2 FEC (#1920908) and from NSRC Alliance (ALLRP 557166 - 20)

    Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America

    Get PDF
    Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree species and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap size alone often does not meet diversity objectives and broader goals to address contemporary forest conditions. Recent research highlights the need to consider site factors and history, natural disturbance models, within-gap structure and recruitment requirements in addition to light resources for desired tree diversity. This synthesis brings together silvicultural developments and ecological literature on gap-based management, highlighting interactions with other factors such as microsite conditions, non-tree vegetation and more. We pose a revised concept for managers and researchers to use in prescriptions and studies focused on integrated overstory and understory manipulations that increase structural complexity within and around canopy openings

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    How Many Varieties of Capitalism? Comparing the Comparative Institutional Analyses of Capitalist Diversity

    Full text link

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Fuelwood Harvest and No Harvest Effects on Forest Composition, Structure, and Diversity of Arasbaran Forests&mdash;A Case Study

    No full text
    The impact of fuelwood harvesting on forest structure and composition is not clear, especially on the understudied and scarce Arasbaran forests in Iran. This research compared woody species density, species diversity, forest composition, and regeneration status in areas of continuous and ceased fuelwood harvesting in Arasbaran forests. We expected fuelwood harvesting to decrease stem density, species diversity, tree size (diameter at the breast height (DBH) and height), and shift composition away from preferred fuelwood species. We measured woody species size and frequency and identified species in three fuelwood harvest and three no harvest sites, with six sample plots (100 m &times; 50 m) per site. Results tended to show differences in composition, diversity, woody species height, and density. Carpinus orientalis, a preferred fuelwood species, tended to be more dominant in no harvest (importance values index (IVI) = 173.4) than harvest areas (IVI = 4.4). The diversity or richness of woody species tended to be higher in harvest (20 &plusmn; 1 species per ha) than in no harvest (14 &plusmn; 2 species per ha) areas, and other measures of diversity supported this trend as well. Harvest areas tended to also be characterized by shorter tree height and lower density of trees, a higher density of regeneration, and fewer small pole-sized trees than no harvest areas. Ongoing fuelwood harvests may further shift composition and structure away from no harvest area, compromising future fuelwood availability, but further detailed research is needed. Close to nature practices may be useful in sustaining fuelwood harvest areas and diversifying areas where fuelwood harvesting has ceased

    Fuelwood Harvest and No Harvest Effects on Forest Composition, Structure, and Diversity of Arasbaran Forests—A Case Study

    No full text
    The impact of fuelwood harvesting on forest structure and composition is not clear, especially on the understudied and scarce Arasbaran forests in Iran. This research compared woody species density, species diversity, forest composition, and regeneration status in areas of continuous and ceased fuelwood harvesting in Arasbaran forests. We expected fuelwood harvesting to decrease stem density, species diversity, tree size (diameter at the breast height (DBH) and height), and shift composition away from preferred fuelwood species. We measured woody species size and frequency and identified species in three fuelwood harvest and three no harvest sites, with six sample plots (100 m × 50 m) per site. Results tended to show differences in composition, diversity, woody species height, and density. Carpinus orientalis, a preferred fuelwood species, tended to be more dominant in no harvest (importance values index (IVI) = 173.4) than harvest areas (IVI = 4.4). The diversity or richness of woody species tended to be higher in harvest (20 ± 1 species per ha) than in no harvest (14 ± 2 species per ha) areas, and other measures of diversity supported this trend as well. Harvest areas tended to also be characterized by shorter tree height and lower density of trees, a higher density of regeneration, and fewer small pole-sized trees than no harvest areas. Ongoing fuelwood harvests may further shift composition and structure away from no harvest area, compromising future fuelwood availability, but further detailed research is needed. Close to nature practices may be useful in sustaining fuelwood harvest areas and diversifying areas where fuelwood harvesting has ceased
    • …
    corecore