38 research outputs found
Effect of salivary contamination during different bonding stages on shear dentin bond strength of one-step self-etch and total etch adhesive
Objective: This study evaluated the effect of saliva contamination during bonding procedures without removing saliva on shear dentin bond strength of three adhesive generations when rubber dam isolation is not feasible.Materials and Methods: Flat superficial dentin surfaces of seventy-two extracted human molars were randomly divided into three groups (A: Scotch Bond MP Plus (SBMP), B: Single Bond (SB), C: Prompt L-Pop) according to the applied adhesives and twelve subgroups (n=6)according to the following saliva contamination applied in different bonding steps. The specimens were contaminated with saliva after etching (A1 and B1), after primer application (A2), after adhesive application before polymerization (A3, B2 and C1), and after adhesivepolymerization (A4, B3 and C2). Three subgroups were not contaminated as controls (A5, B4 and C3). Resin composite was placed on dentin subsequently followed by thermocycling.Shear test was performed by Universal testing machine at 0.5 mm/min crosshead speed. The collected data were statically analyzed using one and two-way ANOVA and Tukey HSD.Results: In contrast to SBMP and SB, the mean shear bond strength of Promote L-Pop was not significantly different between contaminated and uncontaminated subgroups. Mean shear bond strengths of SBMP subgroups contaminated after adhesive polymerization or uncontaminated were significantly higher compared to the other two groups (p<0.05).Conclusion: Unlike Promote L-Pop, saliva contamination could reduce shear bond strength of the total-etch adhesives. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesive contaminated with saliva
E-Glass Fiber Reinforced Composites in Dental Applications
Fiber reinforced composites (FRCs) are more and more widely applied in dentistry to substitute for metallic restorations: periodontal splints, fixed partial dentures, endodontic posts, orthodontic appliances, and some other indirect restorations. In general in FRCs, the fiber reinforcement provides the composite structure with better biomechanical performance due to their superior properties in tension and flexure. Nowadays, the E-glass fiber is most frequently used because of its chemical resistance and relatively low cost. Growing interest is being paid to enhance its clinical performance. Moreover, various techniques are utilized to reinforce the adhesion between the fiber and the matrix. Oral conditions set special requirements and challenges for the clinical applications of FRCs. The biomechanical properties of dental materials are of high importance in dentistry, and given this, there is on-going scientific interest to develop E-glass fiber reinforced composite systems. FRCs are generally biocompatible and their toxicity is not a concern. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Immediate natural tooth bridges
This article describes four cases in which immediate natural tooth bridges have been provided. Four different techniques are described for creating these. The four different retainer types discussed are silanated glass fibres impregnated with PMMA and bis-GMA, laboratory-made metal wings, metal mesh and mesh-type titanium wire. With the support of photographs and diagrams, the techniques for each retainer type are described. The final section of this article discusses the factors that affect the prognosis of immediate natural tooth bridges. Providing information on prognosis is an important part of the consent process; this includes patient factors and clinician factors
The effect of zirconia on flexural strength of IPS Empress 2 ceramic
Background and Aim: All ceramic, inlay-retained resin bonded fixed partial denture is a conservative method for replacement of missing teeth, because of minimal tooth reduction. The connector between the retainer and the pontic is the weak point of these bridges. Reinforcement of ceramic core will increase the clinical longevity. The aim of this study was to determine the effect of zirconia on flexural strength of IPS Empress 2 core ceramic.Materials and Methods: In this experimental in vitro study, twenty eight bar shape specimens (17&acute;3.1&acute;3.1 mm) were made of four different materials: (1) Slip casting in-ceram alumina core (control group) (2) Hot-pressed lithium disilicate core ceramic (IPS Empress 2) (3) IPS Empress 2 with cosmopost (zirconia post) inserted longitudinally in the center of the bar (4) IPS Empress 2 with cosmopost (zirconia post) inserted longitudinally in bottom of the bar. Specimens were subjected to three-point flexure loading with the span of 15mm, at a cross-head speed of 0.5 mm/min. Failure loads were recorded and analyzed using one-way ANOVA and Tomhane Post-hoc tests and p&lt;0.05 was set as the level of significance. Fractured surfaces were then observed by scanning electron microscope (SEM). Four additional samples were made as the third group, and zirconia-IPS interface was observed by SEM before fracture.Results: Mean values and standard deviations of three point flexural strengths of groups 1 to 4, were: 378.4&plusmn;44.6, 258.6&plusmn;27.5, 144.3&plusmn;51.7, 230&plusmn;22.3 MPa respectively. All the groups were statistically different from each other (P&lt;0.05), except groups 2 and 4. The flexural strengths of groups 2, 3, 4 were significantly lower than group 1. Group 3 had the lowest flexural strength. SEM analysis showed that the initiated cracks propagated in the interface of zirconia post and IPS Empress 2 ceramic.Conclusion: Based on the results of this study, inserting zirconia post (cosmopost) in IPS Empress 2 ceramic does not reinforce all-ceramic inlay retained resin bonded fixed partial dentures
Shear Bond Strength of Composite to Nd-YAG Lased Dentin with and without Dye
Statement of Problem: The achievement of a good and durable dentin/composite resin bond is an important task in restorative dentistry. The application of acid conditioners and dentin bonding agents is an accepted method to enhance this bond strength. Pretreating of dentin surface by laser irradiation seems to be a supplemental way to obtain better results,since lased dentin is more roughened and has a widest surface area to interact with acidconditioner.Purpose: In this study, the effect of dentin surface pretreating by Nd-YAG laser on dentin/composite shear bond strength was examined. Moreover, the effect of Chinese ink as a surface energy absorber on this value was investigated.Methods and Materials: Thirty-nine freshly extracted human teeth without dentinal caries were collected and their occlusal dentins were exposed using a diamond disk. The collected samples were divided into three identical groups. The dentin surface of the first group was lased by an Nd-YAG pulsed laser (100 mJ, 20 Hz) through a 320 mm fiber optic in a swiping movement. In the second group, 10% solution of Chinese ink was applied on the dentinal surface before lasing. The samples of the third group were not lased at all. Thedentinal surface prepared by 35% phosphoric acid and Scotchbond MP primer and adhesive. Then, composite resin was cured on dentinal surface. After incubation, in water at 37°C for 24 hours, the samples were tested by Digital Tritest ELE machine.Results: The values of bond strength were 20.83±3.96 MPa, 17.83±3.63 MPa and 19.38±4.88 MPa for the lased, unlased and dye-enhanced groups, respectively. The results were not significant by ANOVA test (a=0.05). Although in the Weiboul modulus, the lased group offered better bond strength.Conclusion: Further studies are required to determine whether chemical as well as physical alterations to the dentin surface are induced by laser etching, and whether these influence the performance of the range of dentin bonding systems used currently in clinical practice
Effect of three porcelain etchants type (HF-APF-PHA) on porcelain- composite shear bond strength
Statement of Problem: Porcelain restorations are susceptible to fracture and a common method for repairing is the use of silane and composite on etched porcelain. Although HF is very effective in porcelain etching but has detrimental effects on tissues. Purpose: In this study, the effect of APF and PHA was compared with HF in porcelain etching. Also the role of silane, unfilled resin and dentin bonding in bond strength of composite- porcelain was evaluated. Methods and Materials: In this experimental in-vitro study, one-hundred twenty porcelain square blocks (5&#61620;5&#61620;2 mm) were prepared and bonding surfaces of each sandblasted. Samples were divided into three groups. The first group (n=40) were etched with buffered HF 9.5% (Ultradent) for 1 min., the second group (n=40) were etched with Iranian APF 1.23% (Kimia) for 10 minutes and the third group (n=40) were etched with Iranian PHA 37% (Kimia) for 1 min. Ultradent silane was applied on the surfaces of half of cases in each group. On the surfaces of half of silane-treated samples unfilled resin was applied and dentin bonding was used on the surfaces of the remaining. Samples without silane were treated in a similar manner. Composite cylinder with 4mm diameter and 2 mm height was bonded to porcelain. Specimens were stored in 37°C distilled water for 24 hours and subjected to 500 cycles. Shear bond strength was measured with an Instron machine and type of fracture was evaluated using a stereomicroscope. Results were analyzed using 3 way ANOVA, Kaplan- Maier and Tukey HSD tests. Results: Findings showed that PHA and APF roughened the porcelain surface without creating retentive micro undercuts but HF etches porcelain and creates retentive microundercuts. Ultradent silane had no significant effect on bond strength of porcelain- composite. Unfilled resin with Ultradent silane compared with dentin bonding with the same silane is more effective in bond strength of composite- porcelain. Conclusion: Based on present study, application of Ultradent silane on sandblasted and etched porcelain with PHA or APF cannot be used as an alternative to this silane on sandblasted and etched porcelain with HF