6 research outputs found

    The micropropagation of chrysanthemums via axillary shoot proliferation and highly efficient plant regeneration by somatic embryogenesis

    Get PDF
    Protocols for axillary shoot proliferation and somatic embryogenesis were developed for Dendranthema × grandiflora (Ramat.) Kitamura cv. Palisade White. Shoot tips were cultured on a modified Murashige and Skoog (MS) media supplemented with benzyl aminopurine (BA) and gibberellic acid (GA3) or BA, kinetin (Kin) and indole-3-acetic acid (IAA). The auxins indole -3-butyric acid (IBA) and IAA were used to induce rooting. Direct somatic embryogenesis was induced from leaf, internode’s stem and for the first time for chrysanthemums from petiole explants. Modified MS medium supplemented with 1 mg/L naphthalene acetic acid (NAA) or 2,4- dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L BA, 200 mg/L casein hydrosylate (CH) and 290 mg/L proline was used for induction. Proliferation rate of 3.2 new microshoots per one inoculated was achieved when BA (0.1 mg/L) was used in combination with GA3 (0.5 mg/L). The number of roots per shoot was higher using IBA (0.5 mg/L), but IAA (2 mg/L) promoted longer roots. A high percentage of embryogenesis was induced by both combinations of plant growth regulators (PGRs). Leaf explants were most responsive, demonstrating the highest percentage of embryogenesis (97.9%), followed by petiole and internode’s stem explants (56.3 and 35.1%, respectively). The number of somatic embryos per embryogenic explant was also the highest on leaf explants; however, the best conversion rate (53.8%) of somatic embryos to plantlets was observed from petiole explants. For this reason, petiole explants are the most suitable type of explants for plant regeneration of chrysanthemum cv. Palisade White through somatic embryogenesis.Key words: Chrysanthemum, Dendranthema × grandiflora (Ramat.) Kitamura cv. Palisade White, micropropagation, direct somatic embryogenesis, explant type

    TRANSGENIC PLANTS RESISTANT TO INSECTS

    No full text
    Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth
    corecore