45 research outputs found

    Three-Wall Segment (TriSeg) Model Describing Mechanics and Hemodynamics of Ventricular Interaction

    Get PDF
    A mathematical model (TriSeg model) of ventricular mechanics incorporating mechanical interaction of the left and right ventricular free walls and the interventricular septum is presented. Global left and right ventricular pump mechanics were related to representative myofiber mechanics in the three ventricular walls, satisfying the principle of conservation of energy. The walls were mechanically coupled satisfying tensile force equilibrium in the junction. Wall sizes and masses were rendered by adaptation to normalize mechanical myofiber load to physiological standard levels. The TriSeg model was implemented in the previously published lumped closed-loop CircAdapt model of heart and circulation. Simulation results of cardiac mechanics and hemodynamics during normal ventricular loading, acute pulmonary hypertension, and chronic pulmonary hypertension (including load adaptation) agreed with clinical data as obtained in healthy volunteers and pulmonary hypertension patients. In chronic pulmonary hypertension, the model predicted right ventricular free wall hypertrophy, increased systolic pulmonary flow acceleration, and increased right ventricular isovolumic contraction and relaxation times. Furthermore, septal curvature decreased linearly with its transmural pressure difference. In conclusion, the TriSeg model enables realistic simulation of ventricular mechanics including interaction between left and right ventricular pump mechanics, dynamics of septal geometry, and myofiber mechanics in the three ventricular walls

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF

    Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyssynchrony of myocardial deformation is usually described in terms of variability only (e.g. standard deviations SD's). A description in terms of the spatio-temporal distribution pattern (vector-analysis) of dyssynchrony or by indices estimating its impact by expressing dyscoordination of shortening in relation to the global ventricular shortening may be preferential. Strain echocardiography by speckle tracking is a new non-invasive, albeit 2-D imaging modality to study myocardial deformation.</p> <p>Methods</p> <p>A post-processing toolbox was designed to incorporate local, speckle tracking-derived deformation data into a 36 segment 3-D model of the left ventricle. Global left ventricular shortening, standard deviations and vectors of timing of shortening were calculated. The impact of dyssynchrony was estimated by comparing the end-systolic values with either early peak values only (early shortening reserve ESR) or with all peak values (virtual shortening reserve VSR), and by the internal strain fraction (ISF) expressing dyscoordination as the fraction of deformation lost internally due to simultaneous shortening and stretching. These dyssynchrony parameters were compared in 8 volunteers (NL), 8 patients with Wolff-Parkinson-White syndrome (WPW), and 7 patients before (LBBB) and after cardiac resynchronization therapy (CRT).</p> <p>Results</p> <p>Dyssynchrony indices merely based on variability failed to detect differences between WPW and NL and failed to demonstrate the effect of CRT. Only the 3-D vector of onset of shortening could distinguish WPW from NL, while at peak shortening and by VSR, ESR and ISF no differences were found. All tested dyssynchrony parameters yielded higher values in LBBB compared to both NL and WPW. CRT reduced the spatial divergence of shortening (both vector magnitude and direction), and improved global ventricular shortening along with reductions in ESR and dyscoordination of shortening expressed by ISF.</p> <p>Conclusion</p> <p>Incorporation of local 2-D echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging.</p

    Metabolism during anaesthesia and recovery in colic and healthy horses: a microdialysis study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle metabolism in horses has been studied mainly by analysis of substances in blood or plasma and muscle biopsy specimens. By using microdialysis, real-time monitoring of the metabolic events in local tissue with a minimum of trauma is possible. There is limited information about muscle metabolism in the early recovery period after anaesthesia in horses and especially in the colic horse. The aims were to evaluate the microdialysis technique as a complement to plasma analysis and to study the concentration changes in lactate, pyruvate, glucose, glycerol, and urea during anaesthesia and in the recovery period in colic horses undergoing abdominal surgery and in healthy horses not subjected to surgery.</p> <p>Methods</p> <p>Ten healthy university-owned horses given anaesthesia alone and ten client-owned colic horses subjected to emergency abdominal surgery were anaesthetised for a mean (range) of 230 min (193–273) and 208 min (145–300) respectively. Venous blood samples were taken before anaesthesia. Venous blood sampling and microdialysis in the gluteal muscle were performed during anaesthesia and until 24 h after anaesthesia. Temporal changes and differences between groups were analysed with an ANOVA for repeated measures followed by Tukey Post Hoc test or Planned Comparisons.</p> <p>Results</p> <p>Lactate, glucose and urea, in both dialysate and plasma, were higher in the colic horses than in the healthy horses for several hours after recovery to standing. In the colic horses, lactate, glucose, and urea in dialysate, and lactate in plasma increased during the attempts to stand. The lactate-to-pyruvate ratio was initially high in sampled colic horses but decreased over time. In the colic horses, dialysate glycerol concentrations varied considerably whereas in the healthy horses, dialysate glycerol was elevated during anaesthesia but decreased after standing. In both groups, lactate concentration was higher in dialysate than in plasma. The correspondence between dialysate and plasma concentrations of glucose, urea and glycerol varied.</p> <p>Conclusion</p> <p>Microdialysis proved to be suitable in the clinical setting for monitoring of the metabolic events during anaesthesia and recovery. It was possible with this technique to show greater muscle metabolic alterations in the colic horses compared to the healthy horses in response to regaining the standing position.</p

    Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

    Get PDF
    Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy

    Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

    Get PDF
    Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches

    Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments

    Get PDF
    Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed
    corecore