9 research outputs found
Stiffness of the human foot and evolution of the transverse arch
The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion
Pulmonary and respiratory muscle function in response to 10 marathons in 10 days
Purpose: Marathon and ultramarathon provoke respiratory muscle fatigue and pulmonary dysfunction; nevertheless, it is unknown how the respiratory system responds to multiple, consecutive days of endurance exercise. Methods: Nine trained individuals (six male) contested 10 marathons in 10 consecutive days. Respiratory muscle strength (maximum static inspiratory and expiratory mouth-pressures), pulmonary function (spirometry), perceptual ratings of respiratory muscle soreness (Visual Analogue Scale), breathlessness (dyspnea, modified Borg CR10 scale), and symptoms of Upper Respiratory Tract Infection (URTI), were assessed before and after marathons on days 1, 4, 7, and 10. Results: Group mean time for 10 marathons was 276 ± 35 min. Relative to pre-challenge baseline (159 ± 32 cmH2O), MEP was reduced after day 1 (136 ± 31 cmH2O, p = 0.017), day 7 (138 ± 42 cmH2O, p = 0.035), and day 10 (130 ± 41 cmH2O, p = 0.008). There was no change in pre-marathon MEP across days 1, 4, 7, or 10 (p > 0.05). Pre-marathon forced vital capacity was significantly diminished at day 4 (4.74 ± 1.09 versus 4.56 ± 1.09 L, p = 0.035), remaining below baseline at day 7 (p = 0.045) and day 10 (p = 0.015). There were no changes in FEV1, FEV1/FVC, PEF, MIP, or respiratory perceptions during the course of the challenge (p > 0.05). In the 15-day post-challenge period, 5/9 (56%) runners reported symptoms of URTI, relative to 1/9 (11%) pre-challenge. Conclusions: Single-stage marathon provokes acute expiratory muscle fatigue which may have implications for health and/or performance, but 10 consecutive days of marathon running does not elicit cumulative (chronic) changes in respiratory function or perceptions of dyspnea. These data allude to the robustness of the healthy respiratory system
The structure of the cushions in the feet of African elephants (Loxodonta africana)
The uniquely designed limbs of the African elephant, Loxodonta africana, support the weight of the largest terrestrial animal. Besides other morphological peculiarities, the feet are equipped with large subcutaneous cushions which play an important role in distributing forces during weight bearing and in storing or absorbing mechanical forces. Although the cushions have been discussed in the literature and captive elephants, in particular, are frequently affected by foot disorders, precise morphological data are sparse. The cushions in the feet of African elephants were examined by means of standard anatomical and histological techniques, computed tomography (CT) and magnetic resonance imaging (MRI). In both the forelimb and the hindlimb a 6th ray, the prepollex or prehallux, is present. These cartilaginous rods support the metacarpal or metatarsal compartment of the cushions. None of the rays touches the ground directly. The cushions consist of sheets or strands of fibrous connective tissue forming larger metacarpal/metatarsal and digital compartments and smaller chambers which were filled with adipose tissue. The compartments are situated between tarsal, metatarsal, metacarpal bones, proximal phalanges or other structures of the locomotor apparatus covering the bones palmarly/plantarly and the thick sole skin. Within the cushions, collagen, reticulin and elastic fibres are found. In the main parts, vascular supply is good and numerous nerves course within the entire cushion. VaterâPacinian corpuscles are embedded within the collagenous tissue of the cushions and within the dermis. Meissner corpuscles are found in the dermal papillae of the foot skin. The micromorphology of elephant feet cushions resembles that of digital cushions in cattle or of the foot pads in humans but not that of digital cushions in horses. Besides their important mechanical properties, foot cushions in elephants seem to be very sensitive structures