2,554 research outputs found

    Suitability of peach and nectarine cultivars for organic production under pannonic climate conditions in Austria

    Get PDF
    The suitability of nectarine and peach cultivars for organic production was examined in a field experiment in the experimental orchard of the institute in Vienna. Therefore, fifteen cultivars including Redhaven as standard cultivar were planted in 2003 and cultivated organically. Characteristics of the cultivars, such as blossom, growth, yield and susceptibility to frost damage and diseases (Taphrina deformans and Monilinia ssp.) were examined. Furthermore, fruit quality characteristics were checked in the laboratory. The results of growth, yield, susceptibility to damages and diseases and fruit quality showed significant differences among the cultivars. ‘Redhaven’, ‘Sweethaven’, ‘Redcal’, ‘Benedikte’ and ‘Mireille’ can be recommended for organic production regarding the results of susceptibility of peach diseases. ‘Red Robin’, ‘Royal Glory’ and “Nectared 6’ can partly be recommended. ‘Weingartenpfirsich Eibesthal’, ‘Sunglo’, ‘Diamond Princess’, Early Devil’ and ‘Royal Gem’ seem to be unsuitable for commercial organic production

    Momentum flow in black-hole binaries. I. Post-Newtonian analysis of the inspiral and spin-induced bobbing

    Get PDF
    A brief overview is presented of a new Caltech/Cornell research program that is exploring the nonlinear dynamics of curved spacetime in binary black-hole collisions and mergers, and of an initial project in this program aimed at elucidating the flow of linear momentum in binary black holes (BBHs). The “gauge-dependence” (arbitrariness) in the localization of linear momentum in BBHs is discussed, along with the hope that the qualitative behavior of linear momentum will be gauge-independent. Harmonic coordinates are suggested as a possibly preferred foundation for fixing the gauge associated with linear momentum. For a BBH or other compact binary, the Landau-Lifshitz formalism is used to define the momenta of the binary’s individual bodies in terms of integrals over the bodies’ surfaces or interiors, and define the momentum of the gravitational field (spacetime curvature) outside the bodies as a volume integral over the field’s momentum density. These definitions will be used in subsequent papers that explore the internal nonlinear dynamics of BBHs via numerical relativity. This formalism is then used, in the 1.5 post-Newtonian approximation, to explore momentum flow between a binary’s bodies and its gravitational field during the binary’s orbital inspiral. Special attention is paid to momentum flow and conservation associated with synchronous spin-induced bobbing of the black holes, in the so-called “extreme-kick configuration” (where two identical black holes have their spins lying in their orbital plane and antialigned)

    Foods, Moods, and Allergies Too a Handbook for the Human Services

    Get PDF
    I decided to write this book after my colleague, Dr. Judith Ramaley, and I spent a year giving presentations about diet and behavior to groups of our Omaha-Lincoln, Nebraska, area. These groups included human services agency staffs, abusive parents, psychotherapists, medical students, parents of newborns, social work students, preschool teachers, child development students and faculty, staff in a child assessment facility, and others

    Associating object names with descriptions of shape that distinguish possible from impossible objects.

    Get PDF
    Five experiments examine the proposal that object names are closely linked torepresentations of global, 3D shape by comparing memory for simple line drawings of structurally possible and impossible novel objects.Objects were rendered impossible through local edge violations to global coherence (cf. Schacter, Cooper, & Delaney, 1990) and supplementary observations confirmed that the sets of possible and impossible objects were matched for their distinctiveness. Employing a test of explicit recognition memory, Experiment 1 confirmed that the possible and impossible objects were equally memorable. Experiments 2–4 demonstrated that adults learn names (single-syllable non-words presented as count nouns, e.g., “This is a dax”) for possible objectsmore easily than for impossible objects, and an item-based analysis showed that this effect was unrelated to either the memorability or the distinctiveness of the individual objects. Experiment 3 indicated that the effects of object possibility on name learning were long term (spanning at least 2months), implying that the cognitive processes being revealed can support the learning of object names in everyday life. Experiment 5 demonstrated that hearing someone else name an object at presentation improves recognition memory for possible objects, but not for impossible objects. Taken together, the results indicate that object names are closely linked to the descriptions of global, 3D shape that can be derived for structurally possible objects but not for structurally impossible objects. In addition, the results challenge the view that object decision and explicit recognition necessarily draw on separate memory systems,with only the former being supported by these descriptions of global object shape. It seems that recognition also can be supported by these descriptions, provided the original encoding conditions encourage their derivation. Hearing an object named at encoding appears to be just such a condition. These observations are discussed in relation to the effects of naming in other visual tasks, and to the role of visual attention in object identification

    The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995â 2013

    Full text link
    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0â ±â 0.6% yrâ 1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yrâ 1, leading to declines in gross primary production (GPP) of 0.07% yrâ 1. Integrated over the analysis period and domain, this represents 0.5 Pgâ C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and dataâ constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.Key PointsAerosol optical depth has decreased due to reduced sulfur dioxide emissionsReduced diffuse radiation decreased cumulative gross primary productivity by 0.5 Pg C during 1995â 2013CESM trends agree with upscaled flux tower results within 20%Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/1/grl55002.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/2/grl55002-sup-0001-supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/3/grl55002_am.pd

    Singular value decomposition applied to compact binary coalescence gravitational-wave signals

    Get PDF
    We investigate the application of the singular value decomposition to compact-binary, gravitational-wave data-analysis. We find that the truncated singular value decomposition reduces the number of filters required to analyze a given region of parameter space of compact binary coalescence waveforms by an order of magnitude with high reconstruction accuracy. We also compute an analytic expression for the expected signal-loss due to the singular value decomposition truncation.Comment: 4 figures, 6 page

    Infrared Spectra of Pyroxenes (Crystalline Chain Silicates) at Room Temperature

    Get PDF
    Pyroxene crystals are common in meteorites but few compositions have been recognized in astronomical environments. We present quantitative room-temperature spectra of 17 Mg-- Fe-- and Ca--bearing ortho- and clinopyroxenes, and a Ca-pyroxenoid in order to discern trends indicative of crystal structure and a wide range of composition. Data are produced using a Diamond Anvil Cell: our band strengths are up to 6 times higher than those measured in KBr or polyethylene dispersions, which include variations in path length (from grain size) and surface reflections that are not addressed in data processing. Pyroxenes have varied spectra: only two bands, at 10.22~μ\mum and 15.34~μ\mum in enstatite (En99_{99}), are common to all. Peak-wavelengths generally increase as Mg is replaced by Ca or Fe. However, two bands in MgFe-pyroxenes shift to shorter wavelengths as the Fe component increases from 0 to 60 per cent. A high-intensity band shifts from 11.6~μ\mum to 11.2~μ\mum and remains at 11.2~μ\mum as Fe increases to 100~per~cent; it resembles an astronomical feature normally identified with olivine or forsterite. The distinctive pyroxene bands between 13~ and 16~μ\mum show promise for their identification in MIRI spectra obtained with JWST. The many pyroxene bands between 40 and 80~μ\mum could be diagnositic of silicate mineralogy if data were obtained with the proposed SPICA telescope. Our data indicate that comparison between room-temperature laboratory bands for enstatite and cold ∼10−K\sim 10-K astronomical dust features at wavelengths ≳28 μ\gtrsim 28~\mum can result in the identification of (Mg,Fe)- pyroxenes that contain 7--15 % less Fe-- than their true values because some temperature shifts mimic some compositional shifts. Therefore some astronomical silicates may contain more Fe, and less Mg, than previously thought.Comment: 16 pages, 10 figures.accepted in MNRA
    • …
    corecore