22 research outputs found

    Phase II Study of Temozolomide and Thalidomide in Patients with Unresectable or Metastatic Leiomyosarcoma

    Get PDF
    We assessed the efficacy of combined temozolomide and thalidomide in patients with unresectable or metastatic leiomyosarcoma in a phase II single-institution trial. Twenty-four patients were enrolled. Temozolomide (150 mg/m2/day for 7 days every other week) was administered with concomitant thalidomide (200 mg/day), and continued until unacceptable toxicity or disease progression. There were no complete responses and two (10%) partial responses. Five patients (24%) had stable disease for at least six months. Fourteen patients (67%) progressed after a median of two-month treatment. The median overall survival (twenty-two assessable patients) was 9.5 months [95% CI 7–28 months]. There were no treatment-related deaths or CTC grade 4 toxicities. Thirteen patients were dose-reduced or discontinued thalidomide due to toxicity. In conclusion, this combination of temozolomide and thalidomide provided disease stabilization in a subset of patients with advanced leiomyosarcoma. We hypothesize that temozolomide is the active agent in this regimen, and should be further studied

    Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting

    No full text
    The cancer-testis antigen NY-ESO-1 is one of the most promising candidates for generic vaccination of cancer patients. Here we analyzed the CD8(+) T cell response to a NY-ESO-1 peptide vaccine composed of the two previously defined peptides 157-165 and 157-167, administered with GM-CSF as a systemic adjuvant. The NY-ESO-1 peptide vaccine elicited a CD8(+) T cell response directed against multiple distinct epitopes in the 157-167 region, as revealed by using A2/peptide multimers incorporating overlapping A2 binding peptides in this region. However, only a minor fraction of the elicited CD8(+) T cells, namely those recognizing the peptide 157-165 with sufficiently high functional avidity, recognized the naturally processed target on NY-ESO-1(+) tumor cells. In contrast, the majority of peptide 157-165–specific CD8(+) T cells exhibited lower functional avidity and no tumor reactivity. In addition, vaccine-elicited CD8(+) T cells specific for other overlapping epitopes in the 157-167 region failed to significantly recognize NY-ESO-1–expressing tumor targets. Thus, because of the complexity of the CD8(+) T cell repertoire that can be elicited by vaccination with synthetic peptides, a precise definition of the targeted epitope, and hence, of the corresponding peptide to be used as immunogen, is required to ensure a precise tumor targeting
    corecore