4 research outputs found

    Mass balance observations and reconstruction for Batysh Sook Glacier, Tien Shan, from 2004 to 2016

    Get PDF
    In this study we present an analysis of measured annual mass balances for the period 2011 to 2016 and a reconstruction of seasonal mass balances from 2004 to 2010 for Batysh Sook Glacier located in the Kyrgyz Tien Shan. Conventional methods and a model-based extrapolation of the point measurements were used to obtain glacier- wide mass balances and to analyze glaciological measurements. Especially at the beginning of the re-established glacier mass balance monitoring program, deviations between the different methods were significant, having a range of 0.40 m w.e. a− 1. With the improvement of the measurement network in later years, the results of the different extrapolation methods showed better agreement (range of 0.10 to 0.22 m w.e. a− 1). For 2011 to 2016, the profile method revealed a mass loss of − 0.41 ± 28 m w.e. a− 1. The contour line method yielded a negative mean mass balance of − 0.34 ± 20 m w.e a− 1, whereas the model-based extrapolation clearly resulted in the most negative value of − 0.43 ± 16 m w.e. a− 1 for the same period.The same distributed accumulation and temperature index melt model used to extrapolate point measurements from 2011 to 2016 was applied in order to reconstruct the mass balance from 2004 to 2010. The model was driven by daily air temperature and precipitation data from a nearby meteorological station and the model parameters were calibrated with in-situ measurements of annual mass balances collected from 2011 to 2016. Winter accumulation measurements taken in May 2014 were used for calibration purposes and to deduce snow distribution patterns. Subseasonal model performance was validated based on the snow cover depletion pattern observed on satellite images during the summer months from 2004 to 2016. For Batysh Sook Glacier an average annual mass balance of − 0.39 ± 0.26 m w.e. a− 1 was found for the period 2003/04 to 2015/16

    Acid extraction of radionuclides from soil samples using autoclave decomposition

    Get PDF
    The specifi cs of the nuclear tests carried out on the territory of the former Semipalatinsk test site (STS) led to the emergence of various sites that diff er in levels of radioactive contamination and radionuclide composition. This also led to a signifi cant diff erence in the solubility of radioactive particles. Traditionally, the “Experimental Field” testing ground was characterized by the presence of sparingly soluble, vitrifi ed particles, which was determined by the features inherent in ground tests of nuclear weapons, namely, the interaction of the high-temperature explosion region with soil particles. The presence of such sparingly soluble particles in the soil cover makes it impossible to use 6–8 Ðœ HCl and 7–8 Ðœ HNO3 solutions which are most often used radiochemical analysis to determine the content of 90Sr and 239+240Pu. This paper considers methods for the acid extraction of anthropogenic radionuclides from soils of the STS using autoclaving. The aim of the research is to develop a method for the acid extraction of anthropogenic radionuclides from enlarged soil samples using autoclave decomposition. A blank soil sample was used to determine the optimal autoclave decomposition parameters; to test the acid extraction method, a soil sample was taken from the territory of the “experimental fi eld” testing ground. The radionuclide 137Cs has been used as the most optimal indicator of acid extraction due to its strong fi xation on clay and mineral soil particles and ease of detection by the gamma radiation. Autoclave decomposition has been carried out by dissolving the studied samples in a mixture of mineral acids (HCl, HNO3, HF, H2SO4). The specifi c activity of radionuclide has been determined on a BE3830 gamma spectrometer with a high-purity germanium detector (Canberra, USA), the amount of undecomposed soil residue has been determined gravimetrically (PA214C analytical balance, Ohaus, USA). The data obtained indicate that the most complete extraction of 137Cs occurs when using concentrated HF solutions (individually or in a mixture with other mineral acids). The degree of extraction of 137Cs varied from 85 to 100%. The worst results have been shown by the use of a mixture of acids 3HCl:HNO3. In this case the degree of extraction of 137Cs did not exceed 20%. The effi ciency of decomposition of soil samples weighing 10 g with a concentrated solution of HF at a temperature of 120 to 160 ºC was ≥95%

    Glacier Runoff Variation Since 1981 in the Upper Naryn River Catchments, Central Tien Shan

    No full text
    Water resources in Central Asia strongly depend on glaciers, which in turn adjust their size in response to climate variations. We investigate glacier runoff in the period 1981-2019 in the upper Naryn basin, Kyrgyzstan. The basins contain more than 1,000 glaciers, which cover a total area of 776 km(2). We model the mass balance and runoff contribution of all glaciers with a simplified energy balance melt model and distributed accumulation model driven by ERA5 LAND re-analysis data for the time period of 1981-2019. The results are evaluated against discharge records, satellite-derived snow cover, stake readings from individual glaciers, and geodetic mass balances. Modelled glacier volume decreased by approximately 6.7 km(3) or 14%, and the majority of the mass loss took place from 1996 until 2019. The decreasing trend is the result of increasingly negative summer mass balances whereas winter mass balances show no substantial trend. Analysis of the discharge data suggests an increasing runoff for the past two decades, which is, however only partly reflected in an increase of glacier melt. Moreover, the strongest increase in discharge is observed in winter, suggesting either a prolonged melting period and/or increased groundwater discharge. The average runoff from the glacierized areas in summer months (June to August) constitutes approximately 23% of the total contributions to the basin's runoff. The results highlight the strong regional variability in glacier-climate interactions in Central Asia.ISSN:2296-665
    corecore