408 research outputs found
Temperature dependence of single particle excitations in a S=1 chain: exact diagonalization calculations compared to neutron scattering experiments
Exact diagonalization calculations of finite antiferromagnetic spin-1
Heisenberg chains at finite temperatures are presented and compared to a recent
inelastic neutron scattering experiment for temperatures T up to 7.5 times the
intrachain exchange constant J. The calculations show that the excitations at
the antiferromagnetic point q=1 and at q=0.5 remain resonant up to at least
T=2J, confirming the recent experimental observation of resonant
high-temperature domain wall excitations. The predicted first and second
moments are in good agreement with experiment, except at temperatures where
three-dimensional spin correlations are most important. The ratio of the
structure factors at q=1 and at q=0.5 is well predicted for the paramagnetic
infinite-temperature limit. For T=2J, however, we found that the experimentally
observed intensity is considerably less than predicted. This suggests that
domain wall excitations on different chains interact up to temperatures of the
order of the spin band width.Comment: 9 pages revtex, submitted to PR
Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol
The efficiency of the original SAGE (Serial Analysis of Gene Expression) protocol was limited by a small average size of cloned concatemers. We describe a modification of the technique that overcomes this problem. Ligation of ditags yields concatemers of various sizes. Small concatemers may aggregate and migrate with large ones during gel electrophoresis. A heating step introduced before gel electrophoresis breaks such contaminating aggregates. This modification yields cloned concatemers with an average size of 67 tags as compared to 22 tags by the original protocol. It enhances the length of cloned concatemers substantially and reduces the costs of SAG
Magnetically-induced electric polarization in an organo-metallic magnet
The coupling between magnetic order and ferroelectricity has been under
intense investigation in a wide range of transition-metal oxides. The strongest
coupling is obtained in so-called magnetically-induced multiferroics where
ferroelectricity arises directly from magnetic order that breaks inversion
symmetry. However, it has been difficult to find non-oxide based materials in
which these effects occur. Here we present a study of copper dimethyl sulfoxide
dichloride (CDC), an organo-metallic quantum magnet containing Cu
spins, in which electric polarization arises from non-collinear magnetic order.
We show that the electric polarization can be switched in a stunning hysteretic
fashion. Because the magnetic order in CDC is mediated by large organic
molecules, our study shows that magnetoelectric interactions can exist in this
important class of materials, opening the road to designing magnetoelectrics
and multiferroics using large molecules as building blocks. Further, we
demonstrate that CDC undergoes a magnetoelectric quantum phase transition where
both ferroelectric and magnetic order emerge simultaneously as a function of
magnetic field at very low temperatures
Magnetically driven ferroelectric order in NiVO
We show that for NiVO long-range ferroelectric and incommensurate
magnetic order appear simultaneously in a single phase transition. The
temperature and magnetic field dependence of the spontaneous polarization show
a strong coupling between magnetic and ferroelectric orders. We determine the
magnetic symmetry of this system by constraining the data to be consistent with
Landau theory for continuous phase transitions. This phenomenological theory
explains our observation the spontaneous polarization is restricted to lie
along the crystal b axis and predicts that the magnitude should be proportional
to a magnetic order parameter.Comment: 11 pages, 3 figure
The Two-Dimensional Square-Lattice S=1/2 Antiferromagnet Cu(pz)(ClO)
We present an experimental study of the two-dimensional S=1/2 square-lattice
antiferromagnet Cu(pz)(ClO) (pz denotes pyrazine - )
using specific heat measurements, neutron diffraction and cold-neutron
spectroscopy. The magnetic field dependence of the magnetic ordering
temperature was determined from specific heat measurements for fields
perpendicular and parallel to the square-lattice planes, showing identical
field-temperature phase diagrams. This suggest that spin anisotropies in
Cu(pz)(ClO) are small. The ordered antiferromagnetic structure is a
collinear arrangement with the magnetic moments along either the
crystallographic b- or c-axis. The estimated ordered magnetic moment at zero
field is m_0=0.47(5)mu_B and thus much smaller than the available single-ion
magnetic moment. This is evidence for strong quantum fluctuations in the
ordered magnetic phase of Cu(pz)(ClO). Magnetic fields applied
perpendicular to the square-lattice planes lead to an increase of the
antiferromagnetically ordered moment to m_0=0.93(5)mu_B at mu_0H=13.5T -
evidence that magnetic fields quench quantum fluctuations. Neutron spectroscopy
reveals the presence of a gapped spin excitations at the antiferromagnetic zone
center, and it can be explained with a slightly anisotropic nearest neighbor
exchange coupling described by J_1^{xy}=1.563(13)meV and
J_1^z=0.9979(2)J_1^{xy}
Coupled SDW and Superconducting Order in FFLO State of CeCoIn
The mechanism of incommensurate (IC) spin-density-wave (SDW) order observed
in the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) phase of CeCoIn is discussed
on the basis of new mode-coupling scheme among IC-SDW order, two
superconducting orders of FFLO with B () symmetry
and -pairing of odd-parity. Unlike the mode-coupling schemes proposed by
Kenzelmann et al, Sciencexpress, 21 August (2008), that proposed in the present
Letter can offer a simple explanation for why the IC-SDW order is observed only
in FFLO phase and the IC wave vector is rather robust against the magnetic
field.Comment: 3pages, 1 figure, accepted for publication in J. Phys. Soc. Jpn.,
Vol.77 (2008), No.1
Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)
Field-dependent specific heat and neutron scattering measurements were used
to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At
zero field the system acquires magnetic long-range order below TN=0.93K with an
ordered moment of 0.44muB. An external field along the b-axis strengthens the
zero-field magnetic order, while fields along the a- and c-axes lead to a
collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T,
respectively (for T=0.65K) and the formation of an energy gap in the excitation
spectrum. We relate the field-induced gap to the presence of a staggered
g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective
staggered fields for magnetic fields applied along the a- and c-axes.
Competition between anisotropy, inter-chain interactions and staggered fields
leads to a succession of three phases as a function of field applied along the
c-axis. For fields greater than mu0 Hc, we find a magnetic structure that
reflects the symmetry of the staggered fields. The critical exponent, beta, of
the temperature driven phase transitions are indistinguishable from those of
the three-dimensional Heisenberg magnet, while measurements for transitions
driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure
Temperature Evolution of the Quantum Gap in CsNiCl3
Neutron scattering measurements on the one-dimensional gapped S=1
antiferromagnet, CsNiCl3, have shown that the excitation corresponding to the
Haldane mass gap Delta at low temperatures persists as a resonant feature to
high temperatures. We find that the strong upward renormalisation of the gap
excitation, by a factor of three between 5 and 70K, is more than enough to
overcome its decreasing lifetime. We find that the gap lifetime is
substantially shorter than that predicted by the scaling theory of Damle and
Sachdev in its low temperature range of validity. The upward gap
renormalisation agrees with the non-linear sigma model at low temperatures and
even up to T of order 2Delta provided an upper mass cutoff is included.Comment: Latex, 3 figures, accepted by Pysical Review
- …
