864 research outputs found

    All NIRspec needs is HST/WFC3 pre-imaging? The use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations

    Get PDF
    The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESA's NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific 0.002"-wide micro shutter doors. To ensure proper target acquisition, the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a Target Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and z∼8z\sim8 candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TA's are mlim>24.5m_{lim}>24.5 AB in WFC3 F125W, (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at ∼23\sim23 AB mag in WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of ∼24\sim24 AB mag in WFC3 F125W is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified z∼8z\sim8 candidate galaxy and require a Galactic star within 20" of it. In this case, a depth of 25.5 AB in F125W is required (with ∼\sim97% confidence).Comment: 17 pages, 15 figures, to appear in the Journal of Astronomical Instrumentatio

    First On-Sky High Contrast Imaging with an Apodizing Phase Plate

    Get PDF
    We present the first astronomical observations obtained with an Apodizing Phase Plate (APP). The plate is designed to suppress the stellar diffraction pattern by 5 magnitudes from 2-9 lambda/D over a 180 degree region. Stellar images were obtained in the M' band (4.85 microns) at the MMTO 6.5m telescope, with adaptive wavefront correction made with a deformable secondary mirror designed for low thermal background observations. The measured PSF shows a halo intensity of 0.1% of the stellar peak at 2 lambda/D (0.36 arcsec), tapering off as r^{-5/3} out to radius 9 lambda/D. Such a profile is consistent with residual errors predicted for servo lag in the AO system. We project a 5 sigma contrast limit, set by residual atmospheric fluctuations, of 10.2 magnitudes at 0.36 arcsec separation for a one hour exposure. This can be realised if static and quasi-static aberrations are removed by differential imaging, and is close to the sensitivity level set by thermal background photon noise for target stars with M'>3. The advantage of using the phase plate is the removal of speckle noise caused by the residuals in the diffraction pattern that remain after PSF subtraction. The APP gives higher sensitivity over the range 2-5 lambda/D compared to direct imaging techniques.Comment: 22 pages, 5 figures, 1 table, ApJ accepte

    bRing: An observatory dedicated to monitoring the β\beta Pictoris b Hill sphere transit

    Get PDF
    Aims. We describe the design and first light observations from the β\beta Pictoris b Ring ("bRing") project. The primary goal is to detect photometric variability from the young star β\beta Pictoris due to circumplanetary material surrounding the directly imaged young extrasolar gas giant planet \bpb. Methods. Over a nine month period centred on September 2017, the Hill sphere of the planet will cross in front of the star, providing a unique opportunity to directly probe the circumplanetary environment of a directly imaged planet through photometric and spectroscopic variations. We have built and installed the first of two bRing monitoring stations (one in South Africa and the other in Australia) that will measure the flux of β\beta Pictoris, with a photometric precision of 0.5%0.5\% over 5 minutes. Each station uses two wide field cameras to cover the declination of the star at all elevations. Detection of photometric fluctuations will trigger spectroscopic observations with large aperture telescopes in order to determine the gas and dust composition in a system at the end of the planet-forming era. Results. The first three months of operation demonstrate that bRing can obtain better than 0.5\% photometry on β\beta Pictoris in five minutes and is sensitive to nightly trends enabling the detection of any transiting material within the Hill sphere of the exoplanet

    Feasibility of the debris ring transit method for the solar-like star HD 107146 by an occulted galaxy

    Get PDF
    Occulting galaxy pairs have been used to determine the transmission and dust composition within the foreground galaxy. Observations of the nearly face-on ring-like debris disk around the solar-like star HD 107146 by HST/ACS in 2004 and HST/STIS in 2011 reveal that the debris ring is occulting an extended background galaxy over the subsequent decades. Our aim is to use 2004 HST observations of this system to model the galaxy and apply this to the 2011 observation in order to measure the transmission of the galaxy through the outer regions of the debris disk. We model the galaxy with an exponential disk and a S\'{e}rsic pseudo-bulge in the V- and I-band, but irregularities due to small scale structure from star forming regions limits accurate determination of the foreground dust distribution. We show that debris ring transit photometry is feasible for optical depth increases of Δτ≥\Delta \tau \geq 0.04 (1σ1 \sigma) on tens of au scales the width of the background galaxy { when the 2011 STIS data are compared directly with new HST/STIS observations, instead of the use of a smoothed model as a reference.Comment: 15 pages, 10 figures, accepted for publication by MNRA

    The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions

    Full text link
    Any predictive theory of star formation must explain observed variations (or lack thereof) in the initial mass function. Recent work suggests that we might expect quantitative variations in the IMF as a function of metallicity (Larson 2005) or magnetic field strength (Shu et al. 2004). We summarize results from several on-going studies attempting to constrain the ratio of high to low mass stars, as well as stars to sub- stellar objects, in a variety of different environments, all containing high mass stars. First, we examine the ratio of stars to sub--stellar objects in the nearby Mon R2 region utilizing NICMOS/HST data. We compare our results to the IMF by Kroupa (2002)]} and to the observed ratios for IC 348 and Orion. Second, we present preliminary results for the ratio of high to low mass stars in W51, the most luminous HII region in the galaxy. Based on ground--based multi--colour images of the cluster obtained with the MMT adaptive optics system, we derive a lower limit to the ratio of high-mass to low-mass stars and compare it to the ratios for nearby clusters. Finally, we present the derived IMF for the R136 region in the LMC where the metallicity is 1/4 solar using HST/NICMOS data. We find that the IMF is consistent with that characterizing the field (Chabrier 2003), as well as nearby star--forming regions, down to 1.0 Msun outside 2 pc. Whereas the results for both Mon R2 and R136 are consistent with the nearby clusters, the ratio of high to low mass stars in W51 tentatively indicates a lack of low--mass objects.Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227: "Massive Star Birth: A Crossroads of Astrophysics

    Exoplanet science with the LBTI: instrument status and plans

    Get PDF
    The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 μ\mum) imaging of nearby planetary systems. To carry out a wide range of high-spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.Comment: 12 pages, 6 figures, Proc. SPI

    Green Urbanism and its Application to Singapore

    Get PDF
    Green urbanism has been applied to cities but not in Asia. Seven characteristics of green urbanism are outlined and then applied to Singapore. The Renewable City is not yet a concept for Singapore. The Carbon Neutral City is being developed for an island Palau Ubin and by some firms but not to significant sectors or parts of urban Singapore. The Distributed City is being developed around Singapore’s polycentric model but needs specific infrastructure plans similar to ones developed by Singapore for Tianjin Eco-City. The Biophillic City is being developed as a world first through its Skyrise Greenery initiative and urban landscaping. The Eco-Efficient City is also being demonstrated through Singapore closing the loop on their water and solid waste systems. The Place Based City is very evident in all its 22 sub centres. And the Sustainable Transport City is an Asian leader in integrated transport planning though there are signs of this becoming harder to achieve
    • …
    corecore