392 research outputs found

    Verification and Validation of NASA-Supported Enhancements to PECAD's Decision Support Tools

    Get PDF
    The NASA Applied Sciences Directorate (ASD), part of the Earth-Sun System Division of NASA's Science Mission Directorate, has partnered with the U.S. Department of Agriculture (USDA) to enhance decision support in the area of agricultural efficiency-an application of national importance. The ASD integrated the results of NASA Earth science research into USDA decision support tools employed by the USDA Foreign Agricultural Service (FAS) Production Estimates and Crop Assessment Division (PECAD), which supports national decision making by gathering, analyzing, and disseminating global crop intelligence. Verification and validation of the following enhancements are summarized: 1) Near-real-time Moderate Resolution Imaging Spectroradiometer (MODIS) products through PECAD's MODIS Image Gallery; 2) MODIS Normalized Difference Vegetation Index (NDVI) time series data through the USDA-FAS MODIS NDVI Database; and 3) Jason-1 and TOPEX/Poseidon lake level estimates through PECAD's Global Reservoir and Lake Monitor. Where possible, each enhanced product was characterized for accuracy, timeliness, and coverage, and the characterized performance was compared to PECAD operational requirements. The MODIS Image Gallery and the GRLM are more mature and have achieved a semi-operational status, whereas the USDA-FAS MODIS NDVI Database is still evolving and should be considere

    The influence of ion energy, ion flux, and etch temperature on the electrical and material quality of GaAs etched with an electron cyclotron resonance source

    Full text link
    The residual damage incurred to GaAs via etching with a Cl2/Ar plasma generated by an electron cyclotron resonance (ECR) source was investigated as a function of variations in ion energy, ion flux, and etching temperature. The residual damage and electrical properties of GaAs were strongly influenced by changes in these etching parameters. Lattice damage was incurred in all processing situations in the form of small dislocation loops. GaAs etched at high ion energies with 200 W rf power, exhibited a defect density five times higher than GaAs etched at lower ion energies with 20 W rf power. This enhanced residual damage at the higher rf powers was paralleled by a degradation in the unannealed contact resistance. Higher etch rates, which accompany the higher rf power levels, caused the width of the disordered region to contract as the rf power was elevated. Therefore, the residual etch damage is influenced by both the generation and removal of defects. Increasing the microwave power or ion flux resulted in elevating the residual defect density, surface roughness, and unannealed contact resistance. GaAs etched at high temperatures, ∼350 °C, resulted in a lower contact resistance than GaAs etched at 25 °C. The high temperature etching augmented the defect diffusion which in turn lowered the near surface defect density. This decrease in residual damage was deemed responsible for improving the electrical performance at 350 °C. The electrical measurements were found to be more sensitive to the density of defects than the vertical extent of disorder beneath the etched surface. Results of this investigation demonstrate that in order to minimize material damage and improve electrical performance, etching with an ECR source should be performed at low rf and microwave powers with a high substrate temperature. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70988/2/JAPIAU-78-4-2712-1.pd

    The geology of the Cressbrook-Buaraba area

    Get PDF

    Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    Get PDF
    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring

    Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    Get PDF
    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring

    All Source Solution Decision Support Products Created for Stennis Space Center in Response to Hurricane Katrina

    Get PDF
    In the aftermath of Hurricane Katrina and in response to the needs of SSC (Stennis Space Center), NASA required the generation of decision support products with a broad range of geospatial inputs. Applying a systems engineering approach, the NASA ARTPO (Applied Research and Technology Project Office) at SSC evaluated the Center's requirements and source data quality. ARTPO identified data and information products that had the potential to meet decision-making requirements; included were remotely sensed data ranging from high-spatial-resolution aerial images through high-temporal-resolution MODIS (Moderate Resolution Imaging Spectroradiometer) products. Geospatial products, such as FEMA's (Federal Emergency Management Agency's) Advisory Base Flood Elevations, were also relevant. Where possible, ARTPO applied SSC calibration/validation expertise to both clarify the quality of various data source options and to validate that the inputs that were finally chosen met SSC requirements. ARTPO integrated various information sources into multiple decision support products, including two maps: Hurricane Katrina Inundation Effects at Stennis Space Center (highlighting surge risk posture) and Vegetation Change In and Around Stennis Space Center: Katrina and Beyond (highlighting fire risk posture)

    Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    Get PDF
    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005

    Research on mechanisms of alloy strengthening. Part 1 - Strengthening through fine particle dispersion. Part 2 - Control of structure and properties by means of rapid quenching of liquid metals /splat cooling/ Semiannual report

    Get PDF
    Alloy strengthening mechanisms - strengthening by fine particle dispersion, and structure and properties control by rapid quenching or splat cooling of liquid metal
    corecore