12,549 research outputs found
No Signalling and Quantum Key Distribution
Standard quantum key distribution protocols are provably secure against
eavesdropping attacks, if quantum theory is correct. It is theoretically
interesting to know if we need to assume the validity of quantum theory to
prove the security of quantum key distribution, or whether its security can be
based on other physical principles. The question would also be of practical
interest if quantum mechanics were ever to fail in some regime, because a
scientifically and technologically advanced eavesdropper could perhaps use
post-quantum physics to extract information from quantum communications without
necessarily causing the quantum state disturbances on which existing security
proofs rely. Here we describe a key distribution scheme provably secure against
general attacks by a post-quantum eavesdropper who is limited only by the
impossibility of superluminal signalling. The security of the scheme stems from
violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final
version; to appear in Phys. Rev. Let
Three-dimensional images of choanoflagellate loricae
Choanoflagellates are unicellular filter-feeding protozoa distributed universally in aquatic habitats. Cells are ovoid in shape with a single anterior flagellum encircled by a funnel-shaped collar of microvilli. Movement of the flagellum creates water currents from which food particles are entrapped on the outer surface of the collar and ingested by pseudopodia. One group of marine choanoflagellates has evolved an elaborate basket-like exoskeleton, the lorica, comprising two layers of siliceous costae made up of costal strips. A computer graphic model has been developed for generating three-dimensional images of choanoflagellate loricae based on a universal set of 'rules' derived from electron microscopical observations. This model has proved seminal in understanding how complex costal patterns can be assembled in a single continuous movement. The lorica, which provides a rigid framework around the cell, is multifunctional. It resists the locomotory forces generated by flagellar movement, directs and enhances water flow over the collar and, for planktonic species, contributes towards maintaining cells in suspension. Since the functional morphology of choanoflagellate cells is so effective and has been highly conserved within the group, the ecological and evolutionary radiation of choanoflagellates is almost entirely dependent on the ability of the external coverings, particularly the lorica, to diversify
Optimal Entanglement Enhancement for Mixed States
We consider the actions of protocols involving local quantum operations and
classical communication (LQCC) on a single system consisting of two separated
qubits. We give a complete description of the orbits of the space of states
under LQCC and characterise the representatives with maximal entanglement of
formation. We thus obtain a LQCC entanglement concentration protocol for a
single given state (pure or mixed) of two qubits which is optimal in the sense
that the protocol produces, with non-zero probability, a state of maximal
possible entanglement of formation. This defines a new entanglement measure,
the maximum extractable entanglement.Comment: Final version: to appear in Phys. Rev. Let
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
Recommended from our members
On reflection
How one nursery improved their support of children's communication and language skills as seen through the lens of the new Ofsted judgement 'Quality of education'. By Julie Kent, Caroline Farley and Sue Hobson
Magnetoresistance, Micromagnetism and Domain Wall Effects in Epitaxial Fe and Co Structures with Stripe Domains
We review our recent magnetotransport and micromagnetic studies of
lithographically defined epitaxial thin film structures of bcc Fe and hcp Co
with stripe domains. Micromagnetic structure and resistivity anisotropy are
shown to be the predominant sources of low field magnetoresistance (MR) in
these microstructures, with domain wall (DW) effects smaller but observable
(DW-MR ). In Fe, at low temperature, in a regime in which fields
have a significant effect on electron trajectories, a novel negative DW
contribution to the resistivity is observed. In hcp Co microstructures,
temperature dependent transport measurements for current perpendicular and
parallel to walls show that any additional resistivity due to DW scattering is
very small.Comment: 7 pages, 8 figures, to appear in Journal of Applied Physics 199
Efficient quantum key distribution secure against no-signalling eavesdroppers
By carrying out measurements on entangled states, two parties can generate a
secret key which is secure not only against an eavesdropper bound by the laws
of quantum mechanics, but also against a hypothetical "post-quantum"
eavesdroppers limited by the no-signalling principle only. We introduce a
family of quantum key distribution protocols of this type, which are more
efficient than previous ones, both in terms of key rate and noise resistance.
Interestingly, the best protocols involve large number of measurements. We show
that in the absence of noise, these protocols can yield one secret bit per
entanglement bit, implying that the key rates in the no-signalling post-quantum
scenario are comparable to the key rates in usual quantum key distribution.Comment: 11 pages, 2 color figures. v2: minor modifications, added references,
added note on the relation to quant-ph/060604
Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy
There is a significant difference in the lattice parameters of GaN and AlN and for many device applications AlxGa1-xN substrates would be preferable to either GaN or AlN. We have studied the growth of free-standing zinc-blende and wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick (similar to 10 mu m) zinc-blende and wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (0 0 1) and GaAs (1 1 1)B substrates respectively and were removed from the GaAs substrate after the growth. We demonstrate that free-standing zinc-blende and wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of Al compositions. (C) 2011 Elsevier B.V. All rights reserved
- …