9,342 research outputs found
Engine condition monitoring: CF6 family 60's through the 80's
The on condition program is described in terms of its effectiveness as a maintenance tool both at the line station as well as at home base by the early detection of engine faults, erroneous instrumentation signals and by verification of engine health. The system encompasses all known methods from manual procedures to the fully automated airborne integrated data system
SAGE 2 satellite data set validation
The results of a validation study of data obtained by the Stratospheric Aerosol and Gas Experiment 2 satellite experiment (SAGE 2) are given. Preliminary SAGE 2 data have been available for the period October, 1984 to May, 1985. In addition, the results of two correlative experimental measurement series have been studied in detail, as well as climatological data obtained by other techniques, including ground-based and airborne lidar. The study shows the SAGE 2 data to be of great potential value to studies of the microphyiscs of stratospheric aerosols, the chemistry of trace gases and stratospheric dynamics. A small number of unidentified errors in the current preliminary data set are described. These will be removed from the next version of the data set which is anticipated to be of archival quality
A new nickel-base wrought superalloy for applications up to 1033 K (1400 F)
Alloy was melted from high purity raw materials and cast ingots extruded at 1422 K. Material was hot rolled to 0.013 m diameter bar stock. Partial solution heat-treatment followed by aging produced structure of fine gamma prime precipitate reinforcing gamma matrix containing coarser blocky gamma prime particles. Alloy can be processed by powder metallurgy
New geometries for high spatial resolution hall probes
The Hall response function of symmetric and asymmetric planar Hall effect
devices is investigated by scanning a magnetized tip above a sensor surface
while simultaneously recording the topography and the Hall voltage. Hall sensor
geometries are tailored using a Focused Ion Beam, in standard symmetric and new
asymmetric geometries. With this technique we are able to reduce a single
voltage probe to a narrow constriction 20 times smaller than the other device
dimensions. We show that the response function is peaked above the
constriction, in agreement with numerical simulations. The results suggest a
new way to pattern Hall sensors for enhanced spatial resolution.Comment: 12 pages, 5 figures, submitted to Journal of Applied Physic
A Fast and Efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations
We present an efficient low-rank updating algorithm for updating the trial
wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is
based on low-rank updating of the Slater determinants. In particular, the
computational complexity of the algorithm is O(kN) during the k-th step
compared with traditional algorithms that require O(N^2) computations, where N
is the system size. For single determinant trial wavefunctions the new
algorithm is faster than the traditional O(N^2) Sherman-Morrison algorithm for
up to O(N) updates. For multideterminant configuration-interaction type trial
wavefunctions of M+1 determinants, the new algorithm is significantly more
efficient, saving both O(MN^2) work and O(MN^2) storage. The algorithm enables
more accurate and significantly more efficient QMC calculations using
configuration interaction type wavefunctions
Development of a global model for atmospheric backscatter at CO2 wavelengths
The effect of aerosol microphysical processes on the backscatter from an aerosol plume undergoing long-range atmospheric transport was studied. A numerical model which examines the effects of coagulation and sedimentation on an aerosol size distribution is under development and the initial results for a single homogeneous layer were obtained. Use was made of the SAGE/SAM II data set to study the global variation of aerosol concentration and, hence, to predict the variation of Beta sub CO2. Computer programs were written to determine the mean, median, and the probability distribution of the measured aerosol extinction as a function of altitude, latitude and geographical conditions. The first data sets analyzed in this way are under study. Data was used to study aerosol behavior over the U.S.A. and the Pacific Ocean
New nickel-base wrought superalloy with applications up to 1253 K (1800 F)
Alloy possesses combination of high tensile strength at low and intermediate temperatures to 1033 K with good rupture strength at high temperatures to 1255 K. Alloy has promise for turbine disk application in future gas turbine engines and for wrought integrally bladed turbine wheel; thickness and weight of disk portion of wheel could be reduced
SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere
The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km
Cheat Sensitive Quantum Bit Commitment
We define cheat sensitive cryptographic protocols between mistrustful parties
as protocols which guarantee that, if either cheats, the other has some nonzero
probability of detecting the cheating. We give an example of an unconditionally
secure cheat sensitive non-relativistic bit commitment protocol which uses
quantum information to implement a task which is classically impossible; we
also describe a simple relativistic protocol.Comment: Final version: a slightly shortened version of this will appear in
PRL. Minor corrections from last versio
Quantum Bit String Commitment
A bit string commitment protocol securely commits classical bits in such
a way that the recipient can extract only bits of information about the
string. Classical reasoning might suggest that bit string commitment implies
bit commitment and hence, given the Mayers-Lo-Chau theorem, that
non-relativistic quantum bit string commitment is impossible. Not so: there
exist non-relativistic quantum bit string commitment protocols, with security
parameters and , that allow to commit
bits to so that 's probability of successfully cheating when revealing
any bit and 's probability of extracting more than bits of
information about the bit string before revelation are both less than
. With a slightly weakened but still restrictive definition of
security against , can be taken to be for a positive
constant . I briefly discuss possible applications.Comment: Published version. (Refs updated.
- …