2,428 research outputs found

    Methyl 2-[(ferrocenylcarbonyl)amino]thiophene-3-carboxylate

    Get PDF
    The title compound, [Fe(C₅H₅)(C₁₂H₁₀NO₃S)], was synthesized from ferrocenecarboxylic acid and methyl 2-aminothiophene-3-carboxylate in modest yield. The substituted ring system is essentially planar through the amidothienylcarboxylate moiety, η⁵-(C₅H₄)CONH(C₄H₂S)CO₂Me, with the amido unit at an angle of 3.60 (7)° to the five-atom thienyl group, which is oriented at an angle of 3.17 (7)° to the ester moiety. The primary hydrogen bond is an intramolecular N-H...O=Ccarboxylate interaction [N...O 2.727 (2) Å], and the main intermolecular hydrogen bond involves a thienyl carboxylate and the carboxylate of a symmetry-related molecule [C...O 3.443 (3) Å]

    Redetermination of para-aminopyridine (fampridine, EL-970) at 150 K

    Get PDF
    The structure of fampridine (EL-970) or 4-aminopyridine, C₅H₆N₂, has been redetermined at 150 K. The room-temperature structure has been reported previously [Chao & Schempp (1977). Acta Cryst. B33, 1557-1564]. Pyramidalization at the amine N atom occurs in fampridine, with the N atom 0.133 (11) Å from the plane of the three C/H/H atoms to which it is bonded; the interplanar angle between the pyridyl ring and NH2 group is 21 (2)°. Aggregation in the solid state occurs by N-H...N and N-H...[pi](pyridine) interactions with N...N and N...[pi](centroid) distances of 2.9829 (18) and 3.3954 (15) Å, respectively; a C-H...[pi](pyridine) contact completes the intermolecular interactions [C...[pi](centroid) = 3.6360 (16) Å]

    Intermolecular interactions in N-(ferrocenylmethyl)anthracene-9-carboxamide

    Get PDF
    The title compound, [Fe(C₅H₅)(C₂₁H₁₆NO)], was synthesized from the coupling reaction of anthracene-9-carboxylic acid and ferrocenylmethylamine. The ferrocenyl (Fc) group and the anthracene ring system both lie approximately orthogonal to the amide moiety. An amide-amide interaction (along the a axis) is the principal interaction [N...O = 2.910 (2) Å]. A C-H...π(arene) interaction [C...centroid = 3.573 (2) Å] and a C-H...O interaction [C...O = 3.275 (3) Å] complete the hydrogen bonding; two short (Fc)C...C(anthracene) contacts are also present

    Vitamin D Status and Bone Mineral Density in Female Collegiate Dancers and Cheerleaders

    Get PDF
    Bone mineral density reflects an athlete’s cumulative history of energy availability, physical activity, and menstrual status, as well as nutritional and environmental factors. Although sports with high-impact loading are associated with higher bone mineral density than low-impact or non-impact sports, confounding variables are differences in the athletes’ body size and sport-specific training. The purpose of this study was to determine if bone mineral density (BMD) and vitamin D status are different between two groups of female collegiate athletes who have comparable body size/weight requirements, but who engage in qualitatively different training regimens. Full body, spine and dual femur BMD was assessed by dual energy X-ray absorptiometry (DXA) in members of a university pep-dance team (n = 10) or cheer team (n = 9), ages 18-22. Plasma vitamin D status was assessed by ELIZA. There was no significant difference between the groups for total body BMD (1.23 g/cm2 dance vs 1.22 g/cm2 cheer, P = 0.70), spine BMD (1.39 g/cm2 dance vs 1.36 g/cm2 cheer, P = 0.72) or dual femur BMD (1.20 g/cm2 dance vs 1.11 g/cm2, P = 0.23). Insufficient serum vitamin D status (20-32 ng/mL) was found in 74% of the athletes (27 ± 4 ng/mL, dance and 25 ± 8 ng/mL, cheer). In addition, estimated daily vitamin D and calcium intakes were less than the RDA for both dancers and cheerleaders. Despite nutritional insufficiencies, BMD was not significantly different between the low-impact activity pep dance team and high-impact activity cheer team, suggesting that the type of physical activity was not as important for BMD in these athletes as participating in 20+ hours a week of physical activity, which could have counteracted the negative effects of the nutrient insufficiencies on their bone health

    The Ownership of the Treasures of the Sea

    Full text link

    Taxation of the Treasures of the Sea

    Get PDF

    Taxation of the Treasures of the Sea

    Get PDF

    Methyl 2-(4-ferrocenylbenzamido)thiophene-3-carboxylate and ethyl 2-(4-ferrocenylbenzamido)-1,3-thiazole-4-acetate, a unique ferrocen

    Get PDF
    The conformations and hydrogen bonding in the thiophene and thiazole title compounds, [Fe(C₅H₅)(C₂₀H₁₄NO₃S)], (I), and [Fe(C₅H₅)(C₁₉H₁₇N₂O₃S)], (II), are discussed. The sequence (C₅H₄)-(C₆H₄)-(CONH)-(C₄H₂S)-(CO₂Me) of rings and moieties in (I) is close to being planar; all consecutive interplanar angles are less than 10°. An intramolecular N-H...O=Cester hydrogen bond [graph set S(6), N...O = 2.768 (2) Å and N-H...O = 134 (2)°] effects the molecular planarity, and aggregation occurs via hydrogen-bonded chains formed from intermolecular Car-H...O=Cester/amide interactions along [010], with C...O distances ranging from 3.401 (3) to 3.577 (2) Å. The thiazole system in (II) crystallizes with two molecules in the asymmetric unit; these differ in the conformation along their long molecular axes; for example, the interplanar angle between the phenylene (C₆H₄) and thiazole (C₃NS) rings is 8.1 (2)° in one molecule and 27.66 (14)° in the other. Intermolecular N-H...O=Cester hydrogen bonds [N...O = 2.972 (4) and 2.971 (3) Å], each augmented by a Cphenylene-H...O=Cester interaction [3.184 (5) and 3.395 (4) Å], form motifs with graph set R¹₂(7) and generate chains along [100]. The amide C=O groups do not participate in hydrogen bonding. Compound (II) is the first reported ferrocenyl-containing thiazole structure

    Synthesis and characterisation of novel ferrocenyl thienyl and thiazolyl systems

    Get PDF
    Ferrocenyl derivatives are currently under investigation by our group and several series containing both amidothienyl and amidothiazolyl systems have been synthesised and characterised. The incorporation of thienyl/thiazolyl groups into a ferrocenyl- or ferrocenylphenyl system greatly enhances the number of potential donor atoms for coordination with metal fragments e.g. PtII, PdII with a view to platinum anti-cancer studies and/or interaction with guest molecules through suitable hydrogen bonding interactions. In nature, thiazole has been found to be vital in certain natural products: examples include the antibiotic bacitracin and the siderophore yersiniabactin. In therapeutic studies the antitumour compound epothilone A and myxothiazole (inhibitor) have been extensively studied
    corecore