4 research outputs found

    Evidence Map of Pancreatic Surgery–A living systematic review with meta-analyses by the International Study Group of Pancreatic Surgery (ISGPS)

    Get PDF
    Background: Pancreatic surgery is associated with considerable morbidity and, consequently, offers a large and complex field for research. To prioritize relevant future scientific projects, it is of utmost importance to identify existing evidence and uncover research gaps. Thus, the aim of this project was to create a systematic and living Evidence Map of Pancreatic Surgery. Methods: PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science were systematically searched for all randomized controlled trials and systematic reviews on pancreatic surgery. Outcomes from every existing randomized controlled trial were extracted, and trial quality was assessed. Systematic reviews were used to identify an absence of randomized controlled trials. Randomized controlled trials and systematic reviews on identical subjects were grouped according to research topics. A web-based evidence map modeled after a mind map was created to visualize existing evidence. Meta-analyses of specific outcomes of pancreatic surgery were performed for all research topics with more than 3 randomized controlled trials. For partial pancreatoduodenectomy and distal pancreatectomy, pooled benchmarks for outcomes were calculated with a 99% confidence interval. The evidence map undergoes regular updates. Results: Out of 30, 860 articles reviewed, 328 randomized controlled trials on 35, 600 patients and 332 systematic reviews were included and grouped into 76 research topics. Most randomized controlled trials were from Europe (46%) and most systematic reviews were from Asia (51%). A living meta-analysis of 21 out of 76 research topics (28%) was performed and included in the web-based evidence map. Evidence gaps were identified in 11 out of 76 research topics (14%). The benchmark for mortality was 2% (99% confidence interval: 1%–2%) for partial pancreatoduodenectomy and <1% (99% confidence interval: 0%–1%) for distal pancreatectomy. The benchmark for overall complications was 53% (99%confidence interval: 46%–61%) for partial pancreatoduodenectomy and 59% (99% confidence interval: 44%–80%) for distal pancreatectomy. Conclusion: The International Study Group of Pancreatic Surgery Evidence Map of Pancreatic Surgery, which is freely accessible via www.evidencemap.surgery and as a mobile phone app, provides a regularly updated overview of the available literature displayed in an intuitive fashion. Clinical decision making and evidence-based patient information are supported by the primary data provided, as well as by living meta-analyses. Researchers can use the systematic literature search and processed data for their own projects, and funding bodies can base their research priorities on evidence gaps that the map uncovers. © 2021 The Author

    Development of biotissue training models for anastomotic suturing in pancreatic surgery

    Get PDF
    Background: Anastomotic suturing is the Achilles heel of pancreatic surgery. Especially in laparoscopic and robotically assisted surgery, the pancreatic anastomosis should first be trained outside the operating room. Realistic training models are therefore needed. Methods: Models of the pancreas, small bowel, stomach, bile duct, and a realistic training torso were developed for training of anastomoses in pancreatic surgery. Pancreas models with soft and hard tex-tures, small and large ducts were incrementally developed and evaluated. Experienced pancreatic sur-geons (n = 44) evaluated haptic realism, rigidity, fragility of tissues, and realism of suturing and knot tying. Results: In the iterative development process the pancreas models showed high haptic realism and highest realism in suturing (4.6 & PLUSMN; 0.7 and 4.9 & PLUSMN; 0.5 on 1-5 Likert scale, soft pancreas). The small bowel model showed highest haptic realism (4.8 & PLUSMN; 0.4) and optimal wall thickness (0.1 & PLUSMN; 0.4 on -2 to +2 Likert scale) and suturing behavior (0.1 & PLUSMN; 0.4). The bile duct models showed optimal wall thickness (0.3 & PLUSMN; 0.8 and 0.4 & PLUSMN; 0.8 on -2 to +2 Likert scale) and optimal tissue fragility (0 & PLUSMN; 0.9 and 0.3 & PLUSMN; 0.7). Conclusion: The biotissue training models showed high haptic realism and realistic suturing behavior. They are suitable for realistic training of anastomoses in pancreatic surgery which may improve patient outcomes.Surgical oncolog
    corecore