1,241 research outputs found

    Constraining Radiatively Inefficient Accretion Flows with Polarization

    Full text link
    The low-luminosity black hole Sgr A* provides a testbed for models of Radiatively Inefficient Accretion Flows (RIAFs). Recent sub-millimeter linear polarization measurements of Sgr A* have provided evidence that the electrons in the accretion flow are relativistic over a large range of radii. Here, we show that these high temperatures result in elliptical plasma normal modes. Thus, polarized millimeter and sub-millimeter radiation emitted within RIAFs will undergo generalized Faraday rotation, a cyclic conversion between linear and circular polarization. This effect will not depolarize the radiation even if the rotation measure is extremely high. Rather, the beam will take on the linear and circular polarization properties of the plasma normal modes. As a result, polarization measurements of Sgr A* in this frequency regime will constrain the temperature, density and magnetic profiles of RIAF models.Comment: 4 pages, 3 figures, accepted by ApJ Letter

    History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic--a synthesis

    Get PDF
    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43deg.S, Subantarctic Front (SAF) c. 50deg.S, and Antarctic Polar Front (AAPF) c. 60deg.S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65deg.S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards "jetting" onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO

    Generation of circular polarization of the CMB

    Full text link
    According to the standard cosmology, near the last scattering surface, the photons scattered via Compton scattering are just linearly polarized and then the primordial circular polarization of the CMB photons is zero. In this work we show that CMB polarization acquires a small degree of circular polarization when a background magnetic field is considered or the quantum electrodynamic sector of standard model is extended by Lorentz-noninvariant operators as well as noncommutativity. The existence of circular polarization for the CMB radiation may be verified during future observation programs and it represents a possible new channel for investigating new physics effects.Comment: 28 pages, v3, Phys. Rev. D 81, 084035 (2010

    Discovery of circularly polarised radio emission from SS 433

    Get PDF
    We report the discovery of circularly polarised radio emission from the radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The flux density spectrum of the circular polarization, clearly detected at four frequencies between 1 - 9 GHz, has a spectral index of (-0.9 +/- 0.1). Multiple components in the source and a lack of very high spatial resolution do not allow a unique determination of the origin of the circular polarization, nor of the spectrum of fractional polarization. However, we argue that the emission is likely to arise in the inner regions of the binary, possibly via propagation-induced conversion of linear to circular polarization, and the fractional circular polarization of these regions may be as high as 10%. Observations such as these have the potential to investigate the composition, whether pairs or baryonic, of the ejecta from X-ray binaries.Comment: Accepted for publication in ApJ Letter

    Arnotts Blending Project

    Get PDF
    Established and supported under the Australian Government’s Cooperative Research Centre Progra

    Magnetotransport in disordered delta-doped heterostructures

    Full text link
    We discuss theoretically how electrons confined to two dimensions in a delta-doped heterostructure can arrange themselves in a droplet-like spatial distribution due to disorder and screening effects when their density is low. We apply this droplet picture to magnetotransport and derive the expected dependence on electron density of several quantities relevant to this transport, in the regimes of weak and moderate magnetic fields. We find good qualitative and quantitative agreement between our calculations and recent experiments on delta-doped heterostructures.Comment: 10 pages RevTeX, 2 figures, uses psfrag; published versio

    Magnetic field induced Coulomb blockade in small disordered delta-doped heterostructures

    Full text link
    At low densities, electrons confined to two dimensions in a delta-doped heterostructure can arrange themselves into self-consistent droplets due to disorder and screening effects. We use this observation to show that at low temperatures, there should be resistance oscillations in low density two dimensional electron gases as a function of the gate voltage, that are greatly enhanced in a magnetic field. These oscillations are intrinsic to small samples and give way to variable range hopping resistivity at low temperatures in larger samples. We place our analysis in the context of recent experiments where similar physical effects have been discussed from the point of view of a Wigner crystal or charge density wave picture.Comment: 6 pages RevTeX, 2 figures, published versio

    Heterogeneous slow dynamics in a two dimensional doped classical antiferromagnet

    Full text link
    We introduce a lattice model for a classical doped two dimensional antiferromagnet which has no quenched disorder, yet displays slow dynamics similar to those observed in supercooled liquids. We calculate two-time spatial and spin correlations via Monte Carlo simulations and find that for sufficiently low temperatures, there is anomalous diffusion and stretched-exponential relaxation of spin correlations. The relaxation times associated with spin correlations and diffusion both diverge at low temperatures in a sub-Arrhenius fashion if the fit is done over a large temperature-window or an Arrhenius fashion if only low temperatures are considered. We find evidence of spatially heterogeneous dynamics, in which vacancies created by changes in occupation facilitate spin flips on neighbouring sites. We find violations of the Stokes-Einstein relation and Debye-Stokes-Einstein relation and show that the probability distributions of local spatial correlations indicate fast and slow populations of sites, and local spin correlations indicate a wide distribution of relaxation times, similar to observ ations in other glassy systems with and without quenched disorder.Comment: 12 pages, 17 figures, corrected erroneous figure, and improved quality of manuscript, updated reference

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure
    corecore