185 research outputs found
Patient-oriented gene set analysis for cancer mutation data
Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods
Genetic progression and the waiting time to cancer
Cancer results from genetic alterations that disturb the normal cooperative
behavior of cells. Recent high-throughput genomic studies of cancer cells have
shown that the mutational landscape of cancer is complex and that individual
cancers may evolve through mutations in as many as 20 different
cancer-associated genes. We use data published by Sjoblom et al. (2006) to
develop a new mathematical model for the somatic evolution of colorectal
cancers. We employ the Wright-Fisher process for exploring the basic parameters
of this evolutionary process and derive an analytical approximation for the
expected waiting time to the cancer phenotype. Our results highlight the
relative importance of selection over both the size of the cell population at
risk and the mutation rate. The model predicts that the observed genetic
diversity of cancer genomes can arise under a normal mutation rate if the
average selective advantage per mutation is on the order of 1%. Increased
mutation rates due to genetic instability would allow even smaller selective
advantages during tumorigenesis. The complexity of cancer progression thus can
be understood as the result of multiple sequential mutations, each of which has
a relatively small but positive effect on net cell growth.Comment: Details available as supplementary material at
http://www.people.fas.harvard.edu/~antal/publications.htm
IgH gene rearrangements as plasma biomarkers in Non-Hodgkin's Lymphoma patients
New biomarkers with improved accuracy could be helpful for monitoring disease in patients with Non-Hodgkin's lymphomas (NHL). Towards this end, we have explored the feasibility of identifying the sequence of rearranged IgH genes using next-generation sequencing, then using PCR to detect specific rearranged DNA fragments in patients' plasma. By capturing and sequencing the IgH genomic regions (IgCap), we were able to detect and precisely determine the sequence of rearranged IgH loci in the tumors of three NHL patients. Moreover, circulating rearranged DNA fragments could be identified in the plasma of all three patients. Even in cases wherein tumor biopsies were unavailable, we were able to use the IgH capture approach to identify rearranged DNA loci in the plasma of 8 of 14 patients. IgCap may enable a more informed management of selected patients with NHL and other B-cell malignancies in the future
Mutant PIK3CA promotes cell growth and invasion of human cancer cells
SummaryPIK3CA is mutated in diverse human cancers, but the functional effects of these mutations have not been defined. To evaluate the consequences of PIK3CA alterations, the two most common mutations were inactivated by gene targeting in colorectal cancer (CRC) cells. Biochemical analyses of these cells showed that mutant PIK3CA selectively regulated the phosphorylation of AKT and the forkhead transcription factors FKHR and FKHRL1. PIK3CA mutations had little effect on growth under standard conditions, but reduced cellular dependence on growth factors. PIK3CA mutations resulted in attenuation of apoptosis and facilitated tumor invasion. Treatment with the PI3K inhibitor LY294002 abrogated PIK3CA signaling and preferentially inhibited growth of PIK3CA mutant cells. These data have important implications for therapy of cancers harboring PIK3CA alterations
Recommended from our members
Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma
Neuroblastomas are tumors of peripheral sympathetic neurons and are the most common solid tumor in children. To determine the genetic basis for neuroblastoma we performed whole-genome sequencing (6 cases), exome sequencing (16 cases), genome-wide rearrangement analyses (32 cases), and targeted analyses of specific genomic loci (40 cases) using massively parallel sequencing. On average each tumor had 19 somatic alterations in coding genes (range, 3–70). Among genes not previously known to be involved in neuroblastoma, chromosomal deletions and sequence alterations of chromatin remodeling genes, ARID1A and ARID1B, were identified in 8 of 71 tumors (11%) and were associated with early treatment failure and decreased survival. Using tumor-specific structural alterations, we developed an approach to identify rearranged DNA fragments in sera, providing personalized biomarkers for minimal residual disease detection and monitoring. These results highlight dysregulation of chromatin remodeling in pediatric tumorigenesis and provide new approaches for the management of neuroblastoma patients
Recommended from our members
Structural basis of nSH2 regulation and lipid binding in PI3Kα
We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP2, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP2 molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant
Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types
Mutations in the chromatin remodeling gene ARID1A have recently been identified in the majority of ovarian clear cell carcinomas (OCCCs). To determine the prevalence of mutations in other tumor types, we evaluated 759 malignant neoplasms including those of the pancreas, breast, colon, stomach, lung, prostate, brain, and blood (leukemias). We identified truncating mutations in 6% of the neoplasms studied; nontruncating somatic mutations were identified in an additional 0.4% of neoplasms. Mutations were most commonly found in gastrointestinal samples with 12 of 119 (10%) colorectal and 10 of 100 (10%) gastric neoplasms, respectively, harboring changes. More than half of the mutated colorectal and gastric cancers displayed microsatellite instability (MSI) and the mutations in these tumors were out‐of‐frame insertions or deletions at mononucleotide repeats. Mutations were also identified in 2–8% of tumors of the pancreas, breast, brain (medulloblastomas), prostate, and lung, and none of these tumors displayed MSI. These findings suggest that the aberrant chromatin remodeling consequent to ARID1A inactivation contributes to a variety of different types of neoplasms. Hum Mutat 33:100–103, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89516/1/humu_21633_sm_Mat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/89516/2/21633_ftp.pd
- …