47 research outputs found

    Biomechanical evaluation of shape-memory alloy staples for internal fixation—an in vitro study

    Get PDF
    Background: The field of orthopaedics is a constantly evolving discipline. Despite the historical success of plates, pins and screws in fracture reduction and stabilisation, there is a continuing search for more efficient and improved methods of fracture fixation. The aim of this study was to evaluate shape-memory staples and to compare them to a currently used implant for internal fracture fixation. Multi-plane bending stability and interfragmentary compression were assessed across a simulated osteotomy using single and double-staple fixation and compared to a bridging plate. Methods: Transverse osteotomies were made in polyurethane blocks (20 × 20 × 120 mm) and repairs were performed with one (n = 6), or two (n = 6) 20 mm nitinol staples, or an eight-hole 2.7 mm quarter-tubular plate (n = 6). A pressure film was placed between fragments to determine contact area and compressive forces before and after loading. Loading consisted of multi-planar four-point bending with an actuator displacement of 3 mm. Gapping between segments was recorded to determine loads corresponding to a 2 mm gap and residual post-load gap. Results: Staple fixations showed statistically significant higher mean compressive loads and contact areas across the osteotomy compared to plate fixations. Double-staple constructs were superior to single-staple constructs for both parameters (p < 0.001). Double-staple constructs were significantly stiffer and endured significantly larger loads before 2 mm gap formation compared to other constructs in the dorsoventral plane (p < 0.001). However, both staple constructs were significantly less stiff and tolerated considerably lower loads before 2 mm gap formation when compared to plate constructs in the ventrodorsal and right-to-left lateral loading planes. Loading of staple constructs showed significantly reduced permanent gap formation in all planes except ventrodorsally when compared to plate constructs. Conclusions: Although staple fixations were not as stable as plate fixations in particular loading planes, double-staple constructs demonstrated the most consistent bending stiffness in all planes. Placing two perpendicular staples is suggested instead of single-staples whenever possible, with at least one staple applied on the compression side of the anticipated loading to improve construct stability

    Variations in corticosteroid/anesthetic injections for painful shoulder conditions: comparisons among orthopaedic surgeons, rheumatologists, and physical medicine and primary-care physicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in corticosteroid/anesthetic doses for injecting shoulder conditions were examined among orthopaedic surgeons, rheumatologists, and primary-care sports medicine (PCSMs) and physical medicine and rehabilitation (PMRs) physicians to provide data needed for documenting inter-group differences for establishing uniform injection guidelines.</p> <p>Methods</p> <p>264 surveys, sent to these physicians in our tri-state area of the western United States, addressed corticosteroid/anesthetic doses and types used for subacromial impingement, degenerative glenohumeral and acromioclavicular arthritis, biceps tendinitis, and peri-scapular trigger points. They were asked about preferences regarding: 1) fluorinated vs. non-fluorinated corticosteroids, 2) acetate vs. phosphate types, 3) patient age, and 4) adjustments for special considerations including young athletes and diabetics.</p> <p>Results</p> <p>169 (64% response rate, RR) surveys were returned: 105/163 orthopaedic surgeons (64%RR), 44/77 PCSMs/PMRs (57%RR), 20/24 rheumatologists (83%RR). Although corticosteroid doses do not differ significantly between specialties (p > 0.3), anesthetic volumes show broad variations, with surgeons using larger volumes. Although 29% of PCSMs/PMRs, 44% rheumatologists, and 41% surgeons exceed "recommended" doses for the acromioclavicular joint, >98% were within recommendations for the subacromial bursa and glenohumeral joint. Depo-Medrol<sup>® </sup>(methylprednisolone acetate) and Kenalog<sup>® </sup>(triamcinolone acetonide) are most commonly used. More rheumatologists (80%) were aware that there are acetate and phosphate types of corticosteroids as compared to PCSMs/PMRs (76%) and orthopaedists (60%). However, relatively fewer rheumatologists (25%) than PCSMs/PMRs (32%) or orthopaedists (32%) knew that phosphate types are more soluble. Fluorinated corticosteroids, which can be deleterious to soft tissues, were used with these frequencies for the biceps sheath: 17% rheumatologists, 8% PCSMs/PMRs, 37% orthopaedists. Nearly 85% use the same non-fluorinated corticosteroid for all injections; <10% make adjustments for diabetic patients.</p> <p>Conclusion</p> <p>Variations between specialists in anesthetic doses suggest that surgeons (who use significantly larger volumes) emphasize determining the percentage of pain attributable to the injected region. Alternatively, this might reflect a more profound knowledge that non-surgeons specialists have of the potentially adverse cardiovascular effects of these agents. Variations between these specialists in corticosteroid/anesthetic doses and/or types, and their use in some special situations (e.g., diabetics), bespeak the need for additional investigations aimed at establishing uniform injection guidelines, and for identifying knowledge deficiencies that warrant advanced education.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Healthy people in unhealthy places

    No full text
    corecore