14 research outputs found

    Potential of Inhaled Bacteriophage Therapy for Bacterial Lung Infection

    Get PDF
    Phage therapy as a promising alternative antimicrobial to treat multidrug resistant (MDR) bacteria related lung infections, has drawn significant attention in clinical trials and bench-scale study in the recent decade, and the therapeutic effect of local delivery of phage has been demonstrated by several clinical reports. This book chapter discusses the current clinical development of inhaled phage therapy followed by the advancement of phage formulation designs for respiratory delivery of phage using various inhalation devices and their in vivo efficacy. The development of combination therapy of phage and antibiotics to combat MDR bacteria associated lung infections is also covered to reflect the current clinical practice. Lastly, we also share our insights on the challenges of advancing inhaled phage therapy and potential directions for future research

    Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi

    Get PDF
    In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 ΞΌM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by compound 6 is probably related to mitochondrial dysfunction. Additionally, the structure-activity relationships of these compounds are discussed

    Vandetanib (Zactima, ZD6474) Antagonizes ABCC1- and ABCG2-Mediated Multidrug Resistance by Inhibition of Their Transport Function

    Get PDF
    ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro.MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05). However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells.Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways

    MET-Targeting Anticancer Drugsβ€”De Novo Design and Identification by Drug Repurposing

    No full text
    The Met protein is a cell surface receptor tyrosine kinase predominantly expressed in epithelial cells. Aberrant regulation of MET is manifested by numerous mechanisms including amplification, mutations, deletion, fusion of the MET proto-oncogene, and protein overexpression. They represent the common causes of drug resistance to conventional and targeted chemotherapy in numerous cancer types. There is also accumulating evidence that MET/HGF signaling drives an immunosuppressive tumor microenvironment and dampens the efficacy of cancer immunotherapy. Substantial research effort has been invested in designing Met-targeting drugs with different mechanisms of action. In this review, we summarized the current preclinical and clinical research about the development of Met-targeting drugs for cancer therapeutics. Early attempts to evaluate Met-targeted therapies in clinical trials without selecting the appropriate patient population did not produce satisfactory outcomes. In the era of personalized medicine, cancer patients harboring MET exon 14 alterations or MET amplification have been found to respond well to Met-inhibitor therapy. The application of Met inhibitors to overcome drug resistance in cancer patients is discussed in this paper. Given that kinases play critical roles in cancer development, numerous kinase-mediated signaling pathways are attractive targets for cancer therapy. Existing kinase inhibitors have also been repurposed to new kinase targets or new indications in cancer. On the other hand, non-oncology drugs have also been repurposed for treating cancer through kinase inhibition as one of their reported anticancer mechanisms

    Correction: Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung Cancer

    No full text
    In advanced lung cancer, epidermal growth factor tyrosine kinase inhibitors (EGFR TKIs) have extraordinary clinical efficacy. However, their usefulness is severely compromised by drug resistance mediated by various mechanisms, the most important of which is the secondary EGFR T790M mutation. The mutation blocks the binding of EGFR TKIs to the receptor kinase, thereby abolishing the therapeutic efficacy. In this study, we used our free and open-source protein-ligand docking software idock to screen worldwide approved small-molecule drugs against EGFR T790M. The computationally selected drug candidates were evaluated in vitro in resistant non-small cell lung cancer (NSCLC) cell lines. The specificity of the drugs toward the mutant EGFR was demonstrated by cell-free kinase inhibition assay. The inhibition of EGFR kinase activity and its downstream signaling pathways in NSCLC cells was shown by immunoblot analysis. The positive hints were revealed to be indacaterol, canagliflozin, and cis-flupenthixol, all of which were shown to induce apoptosis in NSCLC cells harboring the EGFR T790M mutation. Moreover, the combination of indacaterol with gefitinib was also found to produce synergistic anticancer effect in NSCLC cells bearing EGFR T790M. The observed synergistic effect was likely contributed by the enhanced inhibition of EGFR and its downstream signaling molecules

    Anticancer Effect and Structure-Activity Analysis of Marine Products Isolated from Metabolites of Mangrove Fungi in the South China Sea

    Get PDF
    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives

    Polyoxypregnane Steroids from the Stems of <i>Marsdenia tenacissima</i>

    No full text
    A new polyoxypregnane aglycone, tenacigenin D (<b>1</b>), and seven new C<sub>21</sub> steroid glycosides, tenacissimosides D–J (<b>2</b>–<b>8</b>), were isolated from the stems of <i>Marsdenia tenacissima</i>. Their structures were determined by interpretation of their 1D and 2D NMR and other spectroscopic data, as well as by comparison with published values for related known compounds. Compound <b>1</b> was found to circumvent P-glycoprotein (P-gp)-mediated multidrug resistance through an inhibitory effect on P-gp with a similar potency to verapamil. In addition, compound <b>1</b> potentiated the activity of erlotinib and gefitinib in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI)-resistant non-small-cell lung cancer cells

    Small-molecule agents for cancer immunotherapy

    No full text
    Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations
    corecore