18 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Evaluating Monthly Flow Prediction Based on SWAT and Support Vector Regression Coupled with Discrete Wavelet Transform

    No full text
    Reliable and accurate streamflow prediction plays a critical role in watershed water resources planning and management. We developed a new hybrid SWAT-WSVR model based on 12 hydrological sites in the Illinois River watershed (IRW), U.S., that integrated the Soil and Water Assessment Tool (SWAT) model with a Support Vector Regression (SVR) calibration method coupled with discrete wavelet transforms (DWT) to better support modeling watersheds with limited data availability. Wavelet components of the simulated streamflow from the SWAT-Calibration Uncertainty Procedure (SWAT-CUP) and precipitation time series were used as inputs to SVR to build a hybrid SWAT-WSVR. We examined the performance and potential of the SWAT-WSVR model and compared it with observations, SWAT-CUP, and SWAT-SVR using statistical metrics, Taylor diagrams, and hydrography. The results showed that the average of RMSE-observation’s standard deviation ratio (RSR), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and root mean square error (RMSE) from SWAT-WSVR is 0.02, 1.00, −0.15, and 0.27 m3 s−1 in calibration and 0.14, 0.98, −1.88, and 2.91 m3 s−1 in validation on 12 sites, respectively. Compared with the other two models, the proposed SWAT-WSVR model possessed lower discrepancy and higher accuracy. The rank of the overall performance of the three SWAT-based models during the whole study period was SWAT-WSVR > SWAT-SVR > SWAT-CUP. The developed SWAT-WSVR model supplies an additional calibration approach that can improve the accuracy of the SWAT streamflow simulation of watersheds with limited data

    Instream large wood: Denitrification hotspots with low N2O production

    No full text
    We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams - one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an extensive riparian forest and abundant instream large wood. We incubated two types of wood substrates (fresh wood blocks and extant streambed wood) and an artificial stone substrate for nine weeks in each stream. After in situ incubation, we collected the substrates and their attached biofilms and established laboratory-based mesocosm assays with stream water amended with 15N-labeled nitrate-N. Wood substrates at the forested site had significantly higher denitrification than wood substrates from the agricultural site and artificial stone substrates from either site. Nitrate-N removal rates were markedly higher on woody substrates compared to artificial stones at both sites. Nitrate-N removal rates were significantly correlated with biofilm biomass. Denitrification capacity accounted for only a portion of nitrate-N removal observed within the mesocosms in both the wood controls and instream substrates. N2 accounted for 99.7% of total denitrification. Restoration practices that generate large wood in streams should be encouraged for N removal and do not appear to generate high risks of instream N2O generation. © 2014 American Water Resources Association
    corecore