241 research outputs found
Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II
Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported
Fluorescence processes and line identifications in the UV spectra of cool stars
Fluorescence processes active in the outer atmospheres of noncoronal cool stars and the UV lines they produce are summarized. Eight pumping processes and 21 fluorescent line products are discussed. The processes, which produce 12 lines, involves energy levels not previously known to be radiatively populated. Four of these are examples of self-fluorescence, whereby one or more lines of Fe II photo-excite through coincident lines the upper levels of other Fe II lines lines seen in emission, while two others explain the selective excitation of solitary Ni II and Si I lines. Nine of the line products are decays from levels in Fe I and Fe II already known to be radiatively populated
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfv\'en Waves
We present the numerical simulations of winds from evolved giant stars using
a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD)
code. This study extends our previous fully non-linear MHD wind simulations to
include a broadband frequency spectrum of Alfv\'en waves that drive winds from
red giant stars. We calculated four Alfv\'en wind models that cover the whole
range of Alfv\'en wave frequency spectrum to characterize the role of freely
propagated and reflected Alfv\'en waves in the gravitationally stratified
atmosphere of a late-type giant star. Our simulations demonstrate that, unlike
linear Alfv\'en wave-driven wind models, a stellar wind model based on plasma
acceleration due to broadband non-linear Alfv\'en waves, can consistently
reproduce the wide range of observed radial velocity profiles of the winds,
their terminal velocities and the observed mass loss rates. Comparison of the
calculated mass loss rates with the empirically determined mass loss rate for
alpha Tau suggests an anisotropic and time-dependent nature of stellar winds
from evolved giants.Comment: accepted by Ap
The Atmospheric Dynamics of alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars
Using HST/GHRS, HST/STIS and FUSE archival data for alpha Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These waves cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating
SI: The Stellar Imager
The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe
Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission
The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/
Heavy Elements and Cool Stars
We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars
Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback
The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images
- …