1,303 research outputs found
Demographic differences in and correlates of perceived body image discrepancy among urban adolescent girls: a cross-sectional study
Abstract
Background
Understanding factors related to girls’ body image discrepancy, which is the difference between self-perceived current or actual and ideal body size, is important for addressing body-related issues and preventing adverse sequelae. Two aims were to: 1) examine demographic differences in body image discrepancy; and 2) determine the association of body image discrepancy with weight status, percent body fat, physical activity, sedentary behavior, and cardiovascular (CV) fitness among young adolescent girls.
Methods
The cross-sectional study included a secondary analysis of baseline data from a group randomized controlled trial including 1519 5th–8th grade girls in 24 U.S. schools. Girls completed physical activity and sedentary behavior surveys. To indicate perceived current/actual and ideal body image, girls selected from nine body figures the one that represented how they look now and another showing how they want to look. Girls wore accelerometers measuring physical activity. Height, weight, and percent body fat were assessed. The Progressive Aerobic CV Endurance Run was used to estimate CV fitness. Independent t-test, one- and two-way ANOVA, correlational analyses, and hierarchical linear regressions were performed.
Results
The majority (67.5%; n = 1023) chose a smaller ideal than current/actual figure. White girls had higher body image discrepancy than Black girls (p = .035). Body image discrepancy increased with increasing weight status (F3,1506 = 171.32, p < .001). Moderate-to-vigorous physical activity (MVPA) and vigorous physical activity were negatively correlated with body image discrepancy (r = −.10, p < .001; r = −.14, p < .001, respectively), but correlations were not significant after adjusting for race and body mass index (BMI), respectively. Body image discrepancy was moderately correlated with CV fitness (r = −.55, p < .001). After adjusting for demographics, percent body fat, but not CV fitness or MVPA, influenced body image discrepancy. Girls with higher percent body fat had higher body image discrepancy (p < .001).
Conclusion
This study provided important information to guide interventions for promoting a positive body image among girls.
Trial registration
ClinicalTrials.gov Identifier
NCT01503333
, registration date: January 4, 2012.https://deepblue.lib.umich.edu/bitstream/2027.42/139721/1/12887_2017_Article_952.pd
Synthetic approaches to coronafacic acid, coronamic acid, and coronatine
The phytotoxin coronatine (COR) is a functional mimic of the active plant hormone (+)-7-iso-jasmonoyl-l-isoleucine (JA-IIe), which regulates stress responses. Structurally, COR is composed of a core unit, coronafacic acid (CFA), which is connected to coronamic acid (CMA), via an amide linkage. COR has been found to induce a range of biological activity in plants and based on its biological profile, COR, as well as CFA, and CMA are attractive starting points for agrochemical discovery, resulting in numerous total synthesis efforts. This review will discuss the synthetic approaches towards CFA, CMA and, ultimately COR, to date
Deoxycyanamidation of alcohols with N-Cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS)
The first one-pot deoxycyanamidation of alcohols has been developed using N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) as both a sulfonyl transfer reagent and a cyanamide source, accessing a diverse range of tertiary cyanamides in excellent isolated yields. This approach exploits the underdeveloped desulfonylative (N–S bond cleavage) reactivity pathway of NCTS, which is more commonly employed for electrophilic C- and N-cyanation processes
Synthesis and reactivity of N-allenyl cyanamides
N-Allenyl cyanamides have been accessed via a one-pot deoxycyanamidation–isomerization approach using propargyl alcohol and N-cyano-N-phenyl-p-methylbenzenesulfonamide. The utility of this novel class of allenamide was explored through derivatization, with hydroarylation, hydroamination, and cycloaddition protocols employed to access an array of cyanamide products that would be challenging to access using existing methods
Effects of the Girls on the Move randomized trial on adiposity and aerobic performance (secondary outcomes) in low-income adolescent girls
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151987/1/ijpo12559_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151987/2/ijpo12559.pd
Role of intestinal P‐glycoprotein ( mdr1 ) in interpatient variation in the oral bioavailability of cyclosporine
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110064/1/cptclpt1997116.pd
A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses
<p>Abstract</p> <p>Background</p> <p>Kawasaki disease is an acute vasculitis of infants and young children that is recognized through a constellation of clinical signs that can mimic other benign conditions of childhood. The etiology remains unknown and there is no specific laboratory-based test to identify patients with Kawasaki disease. Treatment to prevent the complication of coronary artery aneurysms is most effective if administered early in the course of the illness. We sought to develop a diagnostic algorithm to help clinicians distinguish Kawasaki disease patients from febrile controls to allow timely initiation of treatment.</p> <p>Methods</p> <p>Urine peptidome profiling and whole blood cell type-specific gene expression analyses were integrated with clinical multivariate analysis to improve differentiation of Kawasaki disease subjects from febrile controls.</p> <p>Results</p> <p>Comparative analyses of multidimensional protein identification using 23 pooled Kawasaki disease and 23 pooled febrile control urine peptide samples revealed 139 candidate markers, of which 13 were confirmed (area under the receiver operating characteristic curve (ROC AUC 0.919)) in an independent cohort of 30 Kawasaki disease and 30 febrile control urine peptidomes. Cell type-specific analysis of microarrays (csSAM) on 26 Kawasaki disease and 13 febrile control whole blood samples revealed a 32-lymphocyte-specific-gene panel (ROC AUC 0.969). The integration of the urine/blood based biomarker panels and a multivariate analysis of 7 clinical parameters (ROC AUC 0.803) effectively stratified 441 Kawasaki disease and 342 febrile control subjects to diagnose Kawasaki disease.</p> <p>Conclusions</p> <p>A hybrid approach using a multi-step diagnostic algorithm integrating both clinical and molecular findings was successful in differentiating children with acute Kawasaki disease from febrile controls.</p
- …