781 research outputs found
Using Backpropagation with Temporal Windows to Learn the Dynamics of the CMU Direct-Drive Arm II
Computing the inverse dynamics of a robot arm is an active area of research in the control literature. We hope to learn the inverse dynamics by training a neural network on the measured response of a physical arm. The input to the network is a temporal window of measured positions; output is a vector of torques. We train the network on data measured from the first two joints of the CMU Direct-Drive Arm II as it moves through a randomly-generated sample of "pick-and-place" trajectories. We then test generalization with a new trajectory and compare its output with the torque measured at the physical arm. The network is shown to generalize with a root mean square error/standard deviation (RMSS) of 0.10. We interpreted the weights of the network in terms of the velocity and acceleration filters used in conventional control theory
Gallium Nitride Super-Luminescent Light Emitting Diodes for Optical Coherence Tomography Applications
The role of biasing of absorber sections in multi-contact GaN ~400nm SLEDs is discussed. We go on to assess such devices for OCT applications. Analysis of the SLED emission spectrum allows an axial resolution of 6.0μm to be deduced in OCT applications
Recommended from our members
Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation
What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US
Recommended from our members
Towards Full Field-of-View Fourier Ptychography for Extreme Ultraviolet Microscope
We evaluate various Fourier ptychographic microscopy (FPM) reconstruction algorithms using both simulated and experimental data acquired from an Extreme Ultraviolet (EUV, 13.5 nm wavelength) microscope. We specifically focus on the algorithms' ability to robustly address field-dependent aberrations, which enables increased spatial resolution and quantitative phase imaging across an expanded field of view. We systematically compare the algorithms' performance under aberrations for a single zoneplate imaging system, utilizing Fourier Ring Correlation (FRC) as a systematic metric for assessing reconstruction quality. Furthermore, we explore the impact of systematic errors on the reconstruction of experimental data, aiming to increase the effective field of view by 25-fold, from the nominal 5x5 um2 diffraction-limited area. Additionally, our evaluation incorporates innovative FPM-adjacent methodologies, including the Angular Ptychographic Imaging with Closed-form method (APIC), for reconstructing EUV images
Recommended from our members
Analysis of systematic errors in lateral shearing interferometry for EUV optical testing
Lateral shearing interferometry (LSI) provides a simple means for characterizing the aberrations in optical systems at EUV wavelengths. In LSI, the test wavefront is incident on a low-frequency grating which causes the resulting diffracted orders to interfere on the CCD. Due to its simple experimental setup and high photon efficiency, LSI is an attractive alternative to point diffraction interferometry and other methods that require spatially filtering the wavefront through small pinholes which notoriously suffer from low contrast fringes and improper alignment. In order to demonstrate that LSI can be accurate and robust enough to meet industry standards, analytic models are presented to study the effects of unwanted grating and detector tilt on the system aberrations, and a method for identifying and correcting for these errors in alignment is proposed. The models are subsequently verified by numerical simulation. Finally, an analysis is performed of how errors in the identification and correction of grating and detector misalignment propagate to errors in fringe analysis
Speech Communication
Contains research objectives and reports on three research projects.U. S. Air Force (Electronics Systems Division) under Contract AF 19(628)-5661National Institutes of Health (Grant 2 RO1 NB-04332-06)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
Lithographic characterization of low-order aberrations in a 0.3-NAEUV microfield exposure tool
Although tremendous progress has been made in the crucial area of fabrication of extreme ultraviolet (EUV) projection optics, the realization diffraction-limited high numerical aperture (NA) optics (above 0.2 NA) remains a concern. The highest NA EUV optics available to date are the 0.3-NA Microfield Exposure Tool (MET) optics used in an experimental exposure station at Lawrence Berkeley National Laboratory [1] and commercial METs [2] at Intel and SEMATECH-North. Even though these optics have been interferometrically demonstrated to achieve diffraction-limited wavefront quality, the question remains as to whether or not such performance levels can be maintained after installation of the optics into the exposure tool. Printing-based quantitative aberration measurements provide a convenient mechanism for the characterization of the optic wavefront error in the actual lithography tool. We present the lithographic measurement of low-order aberrations in the Berkeley MET tool, including a quantitative measurement of astigmatism and spherical error and a qualitative measurement of coma. The lithographic results are directly compared to interferometry results obtained from the same optic. Measurements of the Berkeley MET indicate either an alignment drift or errors in the interferometry on the order of 0.5 to 1 nm
Gallium nitride light sources for optical coherence tomography
The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems.
A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT application
Recommended from our members
Detectability and Printability of EUVL Mask Blank Defects for the 32 nm HP Node
The readiness of a defect-free extreme ultraviolet lithography (EUVL) mask blank infrastructure is one of the main enablers for the insertion of EUVL technology into production. It is essential to have sufficient defect detection capability and understanding of defect printability to develop a defect-free EUVL mask blank infrastructure. The SEMATECH Mask Blank Development Center (MBDC) has been developing EUVL mask blanks with low defect densities with the Lasertec M1350 and M7360, the 1st and 2nd generations, respectively, of visible light EUVL mask blank inspection tools. Although the M7360 represents a significant improvement in our defect detection capability, it is time to start developing a 3rd generation tool for EUVL mask blank inspection. The goal of this tool is to detect all printable defects; therefore, understanding defect printability criteria is critical to this tool development. In this paper, we will investigate the defect detectability of a 2nd generation blank inspection tool and a patterned EUVL mask inspection tool. We will also compare the ability of the inspection tools to detect programmed defects whose printability has been estimated from wafer printing results and actinic aerial images results
- …