781 research outputs found

    Using Backpropagation with Temporal Windows to Learn the Dynamics of the CMU Direct-Drive Arm II

    Get PDF
    Computing the inverse dynamics of a robot arm is an active area of research in the control literature. We hope to learn the inverse dynamics by training a neural network on the measured response of a physical arm. The input to the network is a temporal window of measured positions; output is a vector of torques. We train the network on data measured from the first two joints of the CMU Direct-Drive Arm II as it moves through a randomly-generated sample of "pick-and-place" trajectories. We then test generalization with a new trajectory and compare its output with the torque measured at the physical arm. The network is shown to generalize with a root mean square error/standard deviation (RMSS) of 0.10. We interpreted the weights of the network in terms of the velocity and acceleration filters used in conventional control theory

    Gallium Nitride Super-Luminescent Light Emitting Diodes for Optical Coherence Tomography Applications

    Get PDF
    The role of biasing of absorber sections in multi-contact GaN ~400nm SLEDs is discussed. We go on to assess such devices for OCT applications. Analysis of the SLED emission spectrum allows an axial resolution of 6.0μm to be deduced in OCT applications

    Speech Communication

    Get PDF
    Contains research objectives and reports on three research projects.U. S. Air Force (Electronics Systems Division) under Contract AF 19(628)-5661National Institutes of Health (Grant 2 RO1 NB-04332-06)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E

    Lithographic characterization of low-order aberrations in a 0.3-NAEUV microfield exposure tool

    Get PDF
    Although tremendous progress has been made in the crucial area of fabrication of extreme ultraviolet (EUV) projection optics, the realization diffraction-limited high numerical aperture (NA) optics (above 0.2 NA) remains a concern. The highest NA EUV optics available to date are the 0.3-NA Microfield Exposure Tool (MET) optics used in an experimental exposure station at Lawrence Berkeley National Laboratory [1] and commercial METs [2] at Intel and SEMATECH-North. Even though these optics have been interferometrically demonstrated to achieve diffraction-limited wavefront quality, the question remains as to whether or not such performance levels can be maintained after installation of the optics into the exposure tool. Printing-based quantitative aberration measurements provide a convenient mechanism for the characterization of the optic wavefront error in the actual lithography tool. We present the lithographic measurement of low-order aberrations in the Berkeley MET tool, including a quantitative measurement of astigmatism and spherical error and a qualitative measurement of coma. The lithographic results are directly compared to interferometry results obtained from the same optic. Measurements of the Berkeley MET indicate either an alignment drift or errors in the interferometry on the order of 0.5 to 1 nm

    Gallium nitride light sources for optical coherence tomography

    Get PDF
    The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT application
    • …
    corecore